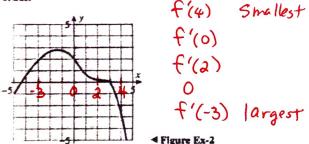
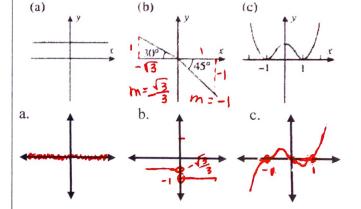

1. For the graphs in the accompanying figure, match the position functions (a) to (c) with their corresponding velocity functions (I) to (III).




2.

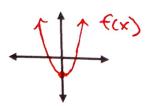
Use the graph of y = f(x) in the accompanying figure to estimate the value of f'(1), f'(3), f'(5), and f'(6).




3.

For the function graphed in the accompanying figure, arrange the numbers 0, f'(-3), f'(0), f'(2), and f'(4) in increasing order.




4. Sketch the graph of the derivative function for each function below.



6. Sketch the graph of a functions f for which

Given that the tangent line to the graph of y = f(x)at the point (2,5) has the equation y = 3x - 1, find  $f'(\lambda)$ . f(2)=3

For this function, what is the instantaneous rate of change of y with respect to x at x = 2?



f'(x) < 0 if x < 0 and f'(x) > 0 if x > 0

7. Given that f(3) = -1 and f'(3) = 5. Find an equation for the tangent line to the graph of y = f(x) at x = 3.

$$m = f'(3) = 5$$
  $y + 1 = 5(x-3)$   
pt  $(3, -1)$   $y = 5(x-3) - 1$   
 $(3, f(-1))$   $y = 5x - 16$ 

8. Given that the tangent line to y = f(x) at the point (1,2) passes through the point (3,5). Find f'(1).

$$f'(1) = \frac{5-2}{3-1} = \frac{3}{2}$$

f(0) = -1, f'(0) = 0,

## General Derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

## Derivative at a Point x otin a

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \quad \text{or} \quad f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

9. If 
$$f'(a) = \lim_{h \to 0} \frac{\sqrt{9+h}-3}{h}$$
, what is  $f(x)$ ? and what is  $a$ ?

$$f(x) = \sqrt{x}$$
,  $a = 9$ 

10. If 
$$f'(a) = \lim_{h \to 0} \frac{(-1+h)^2 - 1}{h}$$
, what is  $f(x)$ ? and what is  $a$ ?

11. Calculate 
$$\frac{dy}{dt}$$
, if  $y = \sqrt{t} \cot t$ 

product 
$$y = t^{\frac{1}{2}} \cot t$$
 $dy = t^{\frac{1}{2}} \frac{d}{dt} (\cot t) + \cot t \frac{d}{dt} (t^{\frac{1}{2}})$ 
 $t^{\frac{1}{2}} (-\csc^2 t) + \cot t (t^{\frac{1}{2}} t^{-\frac{1}{2}})$ 
 $-(t \csc^2 t + t \cot t)$ 

12. Find the equation of the tangent line to the curve  $y = 2 + 3\cos x$  at  $(\pi, -1)$ 

curve 
$$y = 2 + 3\cos x$$
 at  $(\pi, -1)$   
 $y' = -3\sin x$   $y + 1 = 0(x - \pi)$   
 $y'(\pi) = -3\sin \pi$   
 $y'(\pi) = -3(0)$   $y'(\pi) = 0$ 

## Calculator is Permitted for the problem below.

13. A particle moves along a horizontal line so that its position at any time  $t \ge 0$  is given by the function  $s(t) = -t^3 + 8t^2 - 10t + 7$  where s is measured in meters and t is measured in seconds.

a. Find the particle's instantaneous velocity at any time t.

$$V(t)=\Delta'(t)=-3t^2+16t-10$$

b. Find the particle's acceleration at any time t.

$$a(t) = v(t) = a''(t) = -6t + 16$$

c. When is the particle at rest? Justify your answer.

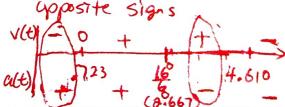
When 
$$V(t)=0$$
 Find zeros on graph at  $t=.723$  Sec or  $t=4.610$  sec

d. Find the displacement of the particle from  $t = 0 \sec to \ t = 5 \sec$ . Show set up.

$$32 - 7 = 25 m$$

e. Find the total distance the particle traveled from t = 0 sec to t = 5 sec. Show set up.

$$|D(.783) - D(0)| + |D(4.610) - D(.723)|$$
  
+  $|D(5) - D(4.610)|$ 


f. What is the particle's speed at 7 seconds?



g. When is the particle's speed decreasing?

Justify your answer.

when V(x) and a(x) have apposite signs



(0,.723) sec or