Notes_Derivatives of Trig Functions

AB Calculus

Use the graph y = sinx to draw tangent lines at each of the five key points.

The derivative of y = sinx is _____.

Now graph the derivative by finding the derivative at each of those 5 points and determine the curve that you see.

The derivative of y = cosx is _____.

Use the graph y = cosx to draw tangent lines at each of the five key points.

Now graph the derivative by finding the derivative at each of those 5 points and determine the curve that you see.

You will need to MEMORIZE these Trig Derivatives!

 $\frac{d}{dx} (sinx) = cosx \qquad \frac{d}{dx} (tanx) = sec^2 x \qquad \frac{d}{dx} (secx) = secx tanx$ $\frac{d}{dx} (cosx) = -sinx \qquad \frac{d}{dx} (cotx) = -csc^2 x \qquad \frac{d}{dx} (cscx) = -cscx cotx$

*Note: All the "co" functions are _____.

Examples:

1.
$$y = x \sin x$$
; find y'
2. $y = x^2 \csc x$; find $\frac{dy}{dx}$

3.
$$y = \frac{sinx}{1+cosx}$$
 4. $y = \frac{2}{cscx} - \frac{1}{secx}$

5. Write the equation of the line tangent to the curve $y = x \sin x$ at $x = \frac{\pi}{2}$.

6. Write the equation of the line tangent to curve of f(x) = 4sinx at $x = \frac{\pi}{3}$.

7. Find the equation of the horizontal tangent over the interval $[0, \pi]$ for y = 2sinx.