Solving Simple Trig Equations Notes-Examples

Math Analysis
Name \qquad
Date \qquad Block
I. Solving Trigonometric Equations without the calculator.

- Note the constraints of the answer.
- Determine the angle (quadrantal or reference) that will produce the given ratio.
- Sketch the \qquad angle in the quadrant(s) that will produce the given \qquad of the ratio.
- Determine the actual angle within the given constraints that will produce the given ratio.
- If the reference angle is in Quadrant I, then the \qquad angle is the answer.
- If the reference angle is in Quadrant II, \qquad from 180° or π.
- If the reference angle is in Quadrant III, \qquad to 180° or π.
- If the reference angle is in Quadrant IV, subtract from \qquad or \qquad -.

Solve for θ without the calculator. Answer in exact values.
\#1-2. $0^{\circ} \leq \boldsymbol{\theta} \leq \mathbf{9 0}^{\circ}$

1. $\tan \theta=\sqrt{3}$
2. $\sec \theta=\frac{2 \sqrt{3}}{3}$
\#5-7. $0^{\circ} \leq \boldsymbol{\theta}<360^{\circ}$
3. $\cos \theta=-\frac{\sqrt{2}}{2}$
4. $\cot \theta=\sqrt{3}$
$\theta^{\prime}=$
$\theta^{\prime}=$
$\theta^{\prime}=$

$\theta^{\prime}=$
$\theta=$

\#8-10. $\mathbf{0} \leq \boldsymbol{\theta}<\mathbf{2 \pi}$
5. $\sec \theta=2$
6. $\tan \theta=-1$
7. $\csc \theta=$ und
$\theta^{\prime}=$
$\theta=$

II. Solving Trigonometric Equations with the calculator.

- Note the constraints of the answer.
- Determine the reference angle using the calculator.
- Check the mode on the calculator.
- Use the inverse Trig functions ($\sin ^{-1}, \cos ^{-1}$ or $\tan ^{-1}$) to determine the reference angle given the ratio of the function. Use only the POSITIVE ratio to determine the reference angle. Record and store the value of the reference angle in your calculator.
- Sketch the \qquad angle in the quadrant(s) that will produce the given \qquad of the ratio.
- Determine the actual angle within the given constraints that will produce the given ratio.
- If the reference angle is in Quadrant I, then the \qquad angle is the answer.
- If the reference angle is in Quadrant II, \qquad from 180° or π.
- If the reference angle is in Quadrant III, \qquad to 180° or π.
- If the reference angle is in Quadrant IV, subtract from \qquad or \qquad .

Solve for θ with the calculator. Round answer in to 3 decimal places
\#1-2. $0^{\circ} \leq \boldsymbol{\theta} \leq \mathbf{9 0}^{\circ}$

1. $\tan \theta=3.15$
2. $\csc \theta=1.76$
\#3-4. $0 \leq \theta \leq \frac{\pi}{2}$
3. $\cos \theta=\frac{4}{9}$
4. $\cot \theta=\frac{5}{11}$

\#5-7. $0^{\circ} \leq \boldsymbol{\theta}<360^{\circ}$
5. $\sin \theta=-0.843$
6. $\sec \theta=\frac{15}{7}$
7. $\tan \theta=-\frac{8}{13}$
$\theta^{\prime}=$
$\theta=$

\#8-10. $0 \leq \boldsymbol{\theta}<2 \boldsymbol{\pi}$
8. $\csc \theta=4.5$
9. $\cos \theta=-\frac{5}{8}$
10. $\cot \theta=8.06$
$\theta^{\prime}=$
$\theta=$
$\theta^{\prime}=$
$\theta=$

