Name: _____

Secant and Tangent Lines

I. Find the equation of the secant line through the indicated points for each.

1).
$$f(x) = x^2 - 3x + 5$$
 from $x = 0$ to $x = 3$
2). $f(x) = x^3 + 10$ from $x = -1$ to $x = 1$

3).
$$f(x) = x^4 + 10$$
 from $x = -1$ to $x = 1$
4). $f(x) = \sqrt{x - 3} + 2$ from $x = 7$ to $x = 12$

5).
$$f(x) = \cos x$$
 from $x = 0$ to $x = \frac{3\pi}{2}$

6). Using the following table, find the equation of the secant line through x = 10, x = 17

x	-4	0	3	10	13	15	17
f(x)	-17	-2	13	19	11	28	34

II. Find the instantaneous rate of change (derivative) for each at the given *x* value.

7).
$$f(x) = 3x - 1$$
; at $x = 0$
8). $f(x) = x^2$; at $x = 1$

9).
$$f(x) = x^2 + x - 1$$
; at $x = 2$
10). $f(x) = \sqrt{x+8} + 3$; at $x = 1$

Name: _____

III. Find the tangent line of each at the given *x* value.

11).
$$f(x) = 2x - 1$$
; at $x = -35$
12). $f(x) = x^3$; at $x = -1$

13).
$$f(x) = x^3 + x^2 - 2x - 3$$
; at $x = -2$
14). $f(x) = \sqrt{x - 3} + 6$; at $x = 12$

IV. Use the graph below for the following problems.

- 15). Use a rule to draw the secant line from x = -1 to x = 2 on/for the above function.
- 16). Estimate at least one value of x in the interval [-1,2] that would have a tangent line that is parallel to the secant line drawn in #15. Graph the tangent line.
- 17). Estimate what values of x (if any) would have tangent lines with slopes of zero.
- 18). Estimate what value of x would have the largest (positive or negative) slope in the interval [-1, 2].