Rates of Change and Tangent Lines

For the function: $f(x)=x^{2}-3 x+5$:

1. Find the average rate of change on the interval $[-1,3]$.
2. Find the instantaneous rate of change at $x=3$.
3. Write the general point-slope form for the equation of a line.
4. Using $x=3$, the y-coordinate found in \#3, and the slope found in \#2, write an equation for this line in point slope form.
5. Graph the function $f(x)$ (red) and the line from \#5. (blue) This blue line is the Tangent Line at $x=3$.
6. Write the equation of the line that is perpendicular to the line in \#5 at $x=3$
Graph and label this the Normal Line on the grid. (green)
7. Write the equation of the line that passes through the points $(-1,9)$ and $(3,5)$.
Graph and label this line the Secant Line on the grid. (orange)

The line represented in \#5 (blue) is called the tangent line to the function $f(x)$ at $x=a$. The tangent line to a curve at a point $x=a$ (the point of tangency) is the line that intersects the curve at $x=a$ and has the same slope (instantaneous rate of change) as the curve at the point $x=a$.

General Equation: $\quad y-f(a)=m(x-a)$
where $\boldsymbol{m}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$

The line represented in \#7 (green) is called the normal line to the function $\mathrm{f}(\mathrm{x})$ at $x=a$. The normal line to a curve at a point $x=a$ is a line that is perpendicular to a tangent line and goes through the point of tangency.

The slope of the normal line is the negative reciprocal of the slope of the tangent line.

The line represented in \#8 (orange) is called a secant line to the function $f(x)$. A secant line contains 2 points on the function and its slope is the average rate of change between those 2 points.

The slope of the secant line from point a to point b is: $\quad \boldsymbol{m}=\frac{f(b)-f(a)}{b-a}$
Practice: $\quad f(x)=x^{3}$

1. Write the equation of the line secant to the curve through $x=0$ and $x=2$.
2. Write the equation of the line tangent to the curve at $x=-3$
3. Write the equation of the line normal to the curve at $x=1$.
