Particle Motion Solutions

We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate. Use your own judgment, based on the group of students, to determine the order and selection of questions to work in the session. Be sure to include a variety of types of questions (multiple choice, free response, calculator, and non-calculator) in the time allotted.

Multiple Choice Solutions

1. E (2003 AB25)

$$
\begin{aligned}
& x(t)=2 t^{3}-21 t^{2}+72 t-3 \\
& v(t)=x^{\prime}(t)=6 t^{2}-42 t+72=0 \\
& 6\left(t^{2}-7 t+12\right)=0 \\
& (t-3)(t-4)=0 \Rightarrow t=3,4
\end{aligned}
$$

2. A (2008 AB21/BC21)
V is increasing when $v^{\prime}(t)>0 \Rightarrow a(t)>0$ which occurs when $x(t)$ is concave up, so $0<t<2$.
3. B (2008 AB7)

Using Fundamental Theorem of Calculus:

$$
\begin{aligned}
& x(1)=x(0)+\int_{0}^{1}\left(3 t^{2}+6 t\right) d t \\
& x(1)=2+\left.\left(t^{3}+3 t^{2}\right)\right|_{t=0} ^{t=1} \\
& x(1)=2+(4-0)=6
\end{aligned}
$$

Alternatively:
$v(t)=3 t^{2}+6 t$
$x(t)=t^{3}+3 t^{2}+c$
$x(0)=0^{3}+6\left(0^{2}\right)+c=2$
$c=2$
$x(t)=t^{3}+3 t^{2}+2$
$x(1)=1+3+2=6$
4. $\mathrm{D}(1985 \mathrm{AB} 14)$
$v(t)>0$ for all $t>0$ therefore,

$$
\begin{aligned}
x(t) & =\int_{0}^{4}|v(t)| d t=\int_{0}^{4}\left(3 t^{\frac{1}{2}}+5 t^{\frac{3}{2}}\right) d t \\
& =\left.\left(2 t^{\frac{3}{2}}+2 t^{\frac{5}{2}}\right)\right|_{t=0} ^{t=4} \\
& =16+64=80 \text { meters }
\end{aligned}
$$

5. C (1985 AB28)

Average velocity of the particle is $\frac{\Delta s}{\Delta t}=\frac{-5(3)^{2}+5(0)}{3-0}=-15$.
6. $\mathrm{B} \quad(1988 \mathrm{BC} 12$ appropriate for AB$)$
$v(t)=\int 3 d t=3 t+C$ and $v(2)=10$
$10=3(2)+C$
$4=C$
Distance traveled from $v(0)=4$ and $v(2)=10$

$$
\begin{aligned}
x(t) & =\int_{0}^{2}(3 t+4) d t \\
& =\left.\left(\frac{3}{2} t^{2}+4 t\right)\right|_{t=0} ^{t=2} \\
& =6+8=14 \text { meters }
\end{aligned}
$$

7. C (2008 AB86)
$v(3)=x^{\prime}(3)=0$, so $x(t)$ has a horizontal tangent at $t=3$; therefore, the only possible graphs are C and E . From the table, $v(1)=x^{\prime}(1)=2$, so $x(t)$ is increasing at $t=1$, so the answer is C .
8. C (2003 AB76)

Using the derivative function on the calculator:
$v^{\prime}(t)=a(t)$
$a(4)=1.633$
9. E (2003 AB91/BC91)

Using the Fundamental Theorem of Calculus and the integral function on the calculator:

$$
\begin{aligned}
& v(2)=v(1)+\int_{1}^{2} \ln \left(1+2^{t}\right) d t \\
& v(2)=2+\int_{1}^{2} \ln \left(1+2^{t}\right) d t=3.346
\end{aligned}
$$

10. A (2003 AB83)

Average velocity of a function on $[0,3]$:
$\frac{1}{3-0} \int_{0}^{3}\left(e^{t}+t e^{t}\right) d t=20.086 \frac{\text { feet }}{\text { second }}$

Free Response

11. (2000 AB2/BC2)
(a) Runner A : velocity $=\frac{10}{3} \cdot 2=\frac{20}{3}$

$$
=6.666 \text { or } 6.667 \frac{\mathrm{~m}}{\mathrm{sec}}
$$

Runner $B: v(2)=\frac{48}{7}=6.857 \frac{\mathrm{~m}}{\mathrm{sec}}$
(b) Runner A : acceleration

$$
=\frac{10}{3}=3.333 \text { meters } / \mathrm{sec}^{2}
$$

Runner B : $a(2)=v^{\prime}(2)=\left.\frac{72}{(2 t+3)^{2}}\right|_{t=2}$

$$
=\frac{72}{49}=1.469 \text { meters } / \mathrm{sec}^{2}
$$

(c) Runner A : distance

$$
=\frac{1}{2}(3)(10)+7(10)=85 \text { meters }
$$

Runner B : distance

$$
=\int_{0}^{10} \frac{24 t}{2 t+3} d t=83.336 \text { meters }
$$

$2 \begin{cases}1: & \text { velocity for Runner } A \\ 1: & \text { velocity }\end{cases}$ 1: velocity for Runner B
$2 \begin{cases}1: & \text { acceleration for Runner } A \\ 1: & \text { acceleration for Runner } B\end{cases}$
[2: distance for Runner A
1: method
1: answer
4 2:
distance for Runner B
1: integral
1: answer
(a) $v(1.5)=1.5 \sin \left(1.5^{2}\right)=1.167$

Up, because $v(1.5)>0$
(b) $a(t)=v^{\prime}(t)=\sin t^{2}+2 t^{2} \cos t^{2}$ $a(1.5)=v^{\prime}(1.5)=-2.048$ or -2.049 No, v is decreasing at 1.5 because $v^{\prime}(1.5)<0$
(c) $y(t)=\int v(t) d t$

$$
=\int t \sin t^{2} d t=-\frac{\cos t^{2}}{2}+C
$$

$$
y(0)=3=-\frac{1}{2}+C \Rightarrow C=\frac{7}{2}
$$

$$
y(t)=-\frac{1}{2} \cos t^{2}+\frac{7}{2}
$$

$$
y(2)=-\frac{1}{2} \cos 4+\frac{7}{2}=3.826 \text { or } 3.827
$$

(d) distance $=\int_{0}^{2}|v(t)| d t=1.173$ or

$$
\begin{aligned}
& v(t)=t \sin t^{2}=0 \\
& t=0 \text { or } t=\sqrt{\pi} \approx 1.772 \\
& y(0)=3 ; y(\sqrt{\pi})=4 ; y(2)=3.826 \text { or } 3.827 \\
& {[y(\sqrt{\pi})-y(0)]+[y(\sqrt{\pi})-y(2)]}
\end{aligned}
$$

$$
=1.173 \text { or } 1.174
$$

1: answer and reason
$\begin{cases}1: & a(1.5) \\ 1: & \text { conclusion and reason }\end{cases}$

11: $\quad y(t)=\int v(t) d t$
$3\left\{1: \quad y(t)=-\frac{1}{2} \cos t^{2}+C\right.$
1: $y(2)$

1: limits of 0 and 2 on an integral of $v(t)$ or $|v(t)|$
or
uses $y(0)$ and $y(2)$ to compute distance
1: handles change of direction at student's turning point
1: answer
$0 / 1$ if incorrect turning point
13. (2005 Form B AB3)

(a) Since $v(t)<0$ for $0<t<3$ and $5<t<6$, and $v(t)>0$ for $3<t<5$, we consider $t=3$ and $t=6$.

$$
\begin{aligned}
& x(3)=-2+\int_{0}^{3} v(t) d t=-2-8=-10 \\
& x(6)=-2+\int_{0}^{6} v(t) d t=-2-8+3-2=-9
\end{aligned}
$$

Therefore, the particle is farthest left at time $t=3$ when its position is $x(3)=-10$
(b) The particle moves continuously and monotonically from $x(0)=-2$ to $x(3)=-10$. Similarly, the particle moves continuously and monotonically from $x(3)=-10$ to $x(5)=-7$ and also from $x(5)=-7$ to $x(6)=-9$.

By the Intermediate Value Theorem, there are three values of t for which the particle is at $x(t)=-8$.
(c) The speed is decreasing on the interval $2<t<3$ since on this interval $v<0$ and v is increasing.
(d) The acceleration is negative on the intervals $0<x<1$ and $4<x<6$ since velocity is decreasing on these intervals.
$3 \begin{cases}1: & \text { identifies } t=3 \text { as a candidate } \\ 1: & \text { considers } \int_{0}^{6} v(t) d t \\ 1: & \text { conclusion }\end{cases}$

1: position at $t=3, t=5$, and $t=6$
$3-1$: description of motion
1: conclusion

1: answer with reason
$2 \begin{cases}1: & \text { answer } \\ 1: & \text { justification }\end{cases}$

