## Optimization Solutions

We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate. Use your own judgment, based on the group of students, to determine the order and selection of questions to work in the session. Be sure to include a variety of types of questions (multiple choice, free response, calculator, and non-calculator) in the time allotted.

Multiple Choice Questions:

1. $\mathrm{B}(1985 \mathrm{AB} 16)$
$f^{\prime}(x)=3 x^{2}-6 x$
$3 x(x-2)=0$
$x=0$ and $x=2$
$f^{\prime}(x)>0$ for $(-\infty, 0), f^{\prime}(x)<0$ for $(0,2), f^{\prime}(x)>0$ for $(2, \infty)$
$f^{\prime}$ changes from positive to negative only at $x=0$.
Alternative:
$f^{\prime \prime}(x)=6 x-6$
$f^{\prime \prime}(0)<0$ so $f$ is concave down at $x=0$ and therefore a relative maximum.
$f^{\prime \prime}(2)>0$ so $f$ is concave up at $x=2$ and therefore a relative minimum.
2. $\mathrm{E} \quad(1973 \mathrm{BC} 27$ appropriate for AB$)$
$f^{\prime}(x)=x^{2}-8 x+12$
$(x-2)(x-6)=0$
$x=2,6$

| $x$ | 0 | 2 | 6 | 9 |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | -5 | $\frac{17}{3}$ | -5 | 22 |

The maximum value occurs at $x=9$
3. $\mathrm{D}(1988 \mathrm{AB} 45)$
$V=\pi r^{2} h$
$16 \pi=\pi r^{2} h$
$h=\frac{16}{r^{2}}$
$A=2 \pi r h+2 \pi r^{2}$
$A=2 \pi r\left(\frac{16}{r^{2}}\right)+2 \pi r^{2}=2 \pi r^{2}+\frac{32 \pi}{r}=2 \pi\left(r^{2}+16 r^{-1}\right)$
$\frac{d A}{d r}=2 \pi\left(2 r-16 r^{-2}\right)=4 \pi r^{-2}\left(r^{3}-8\right)$
$4 \pi r^{-2}\left(r^{3}-8\right)=0$
$r=0,2$
$\frac{d A}{d r}<0$ for $0<r<2$ and $\frac{d A}{d r}>0$ for $r>2$, The minimum surface area of the can is when $r=2$ and $h=4$
4. D (1993 AB15)
$f^{\prime}(x)=2(x-2)(x-3)+(x-3)^{2}$
$f^{\prime}(x)=(x-3)(2(x-2)+(x-3))=(x-3)(3 x-7)$
$0=(x-3)(3 x-7)$
$x=\frac{7}{3}, 3$
$f^{\prime}(x)>0$ for $\left(-\infty, \frac{7}{3}\right), f^{\prime}(x)<0$ for $\left(\frac{7}{3}, 3\right), f^{\prime}(x)>0$ for $(3, \infty)$
$f^{\prime}$ changes from positive to negative only at $x=\frac{7}{3}$.
5. C (1993 AB44)
$f^{\prime}(x)=x\left(\frac{1}{x}\right)+(\ln x)(1)=1+\ln x$
$1+\ln x=0$
$\ln x=-1$
$x=e^{-1}$
$f^{\prime}$ changes from negative to positive only at $x=e^{-1}$, so $f\left(e^{-1}\right)=-\frac{1}{e}$.
Alternative:
$f^{\prime \prime}(x)=\frac{1}{x}$
$f^{\prime \prime}\left(e^{-1}\right)>0$ so $f$ is concave up at $x=e^{-1}$ and therefore a relative minimum.
6. B (1993 BC14 appropriate for AB )
$f^{\prime}(x)=0$
$x=0,2,-3$
$f^{\prime}(x)>0$ for $(-\infty,-3)$ and $(2, \infty)$
$f^{\prime}(x)<0$ for $(-3,0)$ and $(0,2)$
$f^{\prime}$ changes from positive to negative only at $x=-3$ creating only one relative maximum.
7. E (1993 BC36 appropriate for AB )
$h+2 \pi r=30$
$h=30-2 \pi r$
$V=\pi r^{2} h$
$V=\pi r^{2}(30-2 \pi r)=2 \pi\left(15 r^{2}-\pi r^{3}\right)$ for $0<r<\frac{15}{\pi}$
$\frac{d V}{d r}=2 \pi\left(30 r-3 \pi r^{2}\right)$
$r=\frac{10}{\pi}$
$\frac{d V}{d r}>0$ for $\left(0, \frac{10}{\pi}\right)$ and $\frac{d V}{d r}<0$ for $\left(\frac{10}{\pi}, \frac{15}{\pi}\right)$, creating a maximum volume at $r=\frac{10}{\pi}$.
8. B (1969 AB11/BC11)

Let $L$ be the distance from $\left(x,-\frac{x^{2}}{2}\right)$ and $\left(0,-\frac{1}{2}\right)$ such that
$L^{2}=(x-0)^{2}+\left(\frac{x^{2}}{2}-\frac{1}{2}\right)^{2}$
$2 L \frac{d L}{d x}=2 x+2\left(\frac{x^{2}}{2}-\frac{1}{2}\right)(x)$
$2 L \frac{d L}{d x}=2 x+x^{3}-x$
$2 L \frac{d L}{d x}=x+x^{3}$
$\frac{d L}{d x}=\frac{x\left(1+x^{2}\right)}{2 L}=0$
$x=0$
$\frac{d L}{d x}<0$ for all $x<0$ and $\frac{d L}{d x}>0$ for all $x>0$, so the minimum distance occurs at $x=0$
$0^{2}+2 y=0 \Rightarrow y=0$
9. A (1997 BC9 appropriate for AB)
$f$ increases for $0 \leq x \leq 6\left(f^{\prime} \geq 0\right)$ and $f$ decreases $6 \leq x \leq 8\left(f^{\prime}<0\right)$. By comparing the areas it is clear that $f$ increases more than it decreases, so the absolute minimum must occur at the left endpoint, $x=0$.
10. B (1988 BC45 appropriate for AB$)$
$A=(2 x)(2 y)=4 x y$ and $y=\sqrt{4-\frac{4}{9} x^{2}}$, so $A=8 x \sqrt{1-\frac{1}{9} x^{2}}$,
$A^{\prime}=8\left(\left(1-\frac{1}{9} x^{2}\right)^{\frac{1}{2}}+\frac{1}{2} x\left(1-\frac{1}{9} x^{2}\right)^{-\frac{1}{2}}\left(-\frac{2}{9} x\right)\right)=\frac{8}{9}\left(1-\frac{1}{9} x^{2}\right)^{-\frac{1}{2}}\left(9-2 x^{2}\right)$
$A^{\prime}=0$ at $\frac{3}{\sqrt{2}} ; A^{\prime}$ is undefined at $x= \pm 3$. The maximum area occurs when $x=\frac{3}{\sqrt{2}}$ and $y=\sqrt{2}$. The value of the largest area is $A=4 x y=4\left(\frac{3}{\sqrt{2}}\right)(\sqrt{2})=12$
11. B (1988 AB33)

Let $P(x)=x(2 x-8)=2 x^{2}-8 x$
$P^{\prime}(x)=4 x-8$
$0=4 x-8$
$x=2$
$P^{\prime \prime}(x)=4$ second derivative is positive for all $x$ values, therefore $P(x)$ has a minimum
at $x=2 ; P(2)=2(2)^{2}-8(2)=-8$
Alternatively:
$P^{\prime}$ changes from negative to positive at $x=2 ; P(2)=2(2)^{2}-8(2)=-8$
Free Response
12. (calculator not allowed) (2008 AB6b)
(b) $f^{\prime}(x)=0$ when $x=e$. The function $f$ has a relative maximum at $x=e$ because $f^{\prime}(x)$ changes from positive to negative at $x=e$.
$3 \begin{cases}1: & x=e \\ 1: & \text { relative maximum } \\ 1: & \text { justification }\end{cases}$
13. (calculator allowed) (2009 AB2b)
(b) $R^{\prime}(t)=0$ when $t=0$ and $t=1.36296$ The maximum rate may occur at $0, a=1.36296$, or 2 .

$$
R(0)=0
$$

$$
R(a)=854.527
$$

$$
R(2)=120
$$

The maximum rate occurs when $t=1.362$ or 1.363 .
14. (calculator allowed) (2010 AB2d)
(d) $P^{\prime}(t)=0$ when $t=9.183503$ and $t=10.816497$.

| $t$ | $P(t)$ |
| :---: | :---: |
| 8 | 0 |
| 9.183503 | 5.088662 |
| 10.816497 | 2.911338 |
| 12 | 8 |

$3 \begin{cases}1: & \text { considers } P^{\prime}(t)=0 \\ 1: & \text { identifies candidates } \\ 1: & \text { answer with } \\ & \text { justification }\end{cases}$

Entries are being processed most quickly at time $t=12$.
15. (calculator not allowed) (2010 AB5c)
(c) $h^{\prime}(x)=g^{\prime}(x)-x=0 \Rightarrow g^{\prime}(x)=x$

On the interval $-2 \leq x \leq 2, g^{\prime}(x)=\sqrt{4-x^{2}}$.
On this interval, $g^{\prime}(x)=x$ when $x=\sqrt{2}$.
The only other solution to $g^{\prime}(x)=x$ is $x=3$.
$h^{\prime}(x)=g^{\prime}(x)-x>0$ for $0 \leq x<\sqrt{2}$
$h^{\prime}(x)=g^{\prime}(x)-x \leq 0$ for $\sqrt{2}<x \leq 5$
Therefore $h$ has a relative maximum at $x=\sqrt{2}$ and $h$ has neither a minimum nor a maximum at $x=3$.
16. (calculator not allowed) (2009 AB6c)
(c) Since $f^{\prime}(x)>0$ on the intervals $-4<x<-2$ and $-2<x<3 \ln \left(\frac{5}{3}\right), f$ is increasing on the interval $-4 \leq x \leq 3 \ln \left(\frac{5}{3}\right)$.
Since $f^{\prime}(x)<0$ on the interval $3 \ln \left(\frac{5}{3}\right)<x<4$,
$f$ is decreasing on the interval $3 \ln \left(\frac{5}{3}\right) \leq x \leq 4$.
Therefore, $f$ has an absolute maximum at $x=3 \ln \left(\frac{5}{3}\right)$.
(c) Since $f(t)-g(t)$ changes sign from positive to negative only at $t=3$, the candidates for the absolute maximum are at $t=0,3$, and 7 .

| $t$ (hours) | Gallons of water |
| :---: | :--- |
| 0 | 5000 |
| 3 | $5000+\int_{0}^{3} f(t) d t-250(3)=5126.591$ |
| 7 | $5126.591+\int_{3}^{7} f(t) d t-2000(4)=4513.807$ |

The amount of water in the tank is greatest at 3 hours. At that time, the amount of water in the tank, rounded to the nearest gallon, is 5127 gallons.

1: identifies $t=3$ as a candidate
1: integrand
1: amount of water at $t=3$
1: amount of water at $t=7$
1: conclusion

