

Optimization Solutions

We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate. Use your own judgment, based on the group of students, to determine the order and selection of questions to work in the session. Be sure to include a variety of types of questions (multiple choice, free response, calculator, and non-calculator) in the time allotted.

Multiple Choice Questions:

- 1. B (1985 AB16) $f'(x) = 3x^2 - 6x$ 3x(x-2) = 0 x = 0 and x = 2 f'(x) > 0 for $(-\infty, 0)$, f'(x) < 0 for (0, 2), f'(x) > 0 for $(2, \infty)$ f' changes from positive to negative only at x = 0. *Alternative:* f''(x) = 6x - 6 f''(0) < 0 so f is concave down at x = 0 and therefore a relative maximum. f''(2) > 0 so f is concave up at x = 2 and therefore a relative minimum.
- 2. E (1973 BC27 appropriate for AB)

$f'(x) = x^2 - 8x + 12$	x	0	2	6	9
(x-2)(x-6) = 0 x = 2, 6	f(x)	-5	$\frac{17}{3}$	-5	22

The maximum value occurs at x = 9

3. D (1988 AB45)

$$V = \pi r^2 h$$

 $16\pi = \pi r^2 h$
 $h = \frac{16}{r^2}$
 $A = 2\pi r h + 2\pi r^2$
 $A = 2\pi r \left(\frac{16}{r^2}\right) + 2\pi r^2 = 2\pi r^2 + \frac{32\pi}{r} = 2\pi \left(r^2 + 16r^{-1}\right)$
 $\frac{dA}{dr} = 2\pi (2r - 16r^{-2}) = 4\pi r^{-2} (r^3 - 8)$
 $4\pi r^{-2} (r^3 - 8) = 0$
 $r = 0, 2$
 $\frac{dA}{dr} < 0$ for $0 < r < 2$ and $\frac{dA}{dr} > 0$ for $r > 2$, The minimum surface area of the can is when $r = 2$ and $h = 4$

Copyright © 2013 National Math + Science Initiative®, Dallas, TX. All rights reserved. Visit us online at www.nms.org

- 4. D (1993 AB15) $f'(x) = 2(x-2)(x-3) + (x-3)^2$ f'(x) = (x-3)(2(x-2) + (x-3)) = (x-3)(3x-7) 0 = (x-3)(3x-7) $x = \frac{7}{3}, 3$ f'(x) > 0 for $\left(-\infty, \frac{7}{3}\right), f'(x) < 0$ for $\left(\frac{7}{3}, 3\right), f'(x) > 0$ for $(3, \infty)$ f' changes from positive to negative only at $x = \frac{7}{3}$.
- 5. C (1993 AB44) $f'(x) = x \left(\frac{1}{x}\right) + (\ln x)(1) = 1 + \ln x$ $1 + \ln x = 0$ $\ln x = -1$

f' changes from negative to positive only at $x = e^{-1}$, so $f(e^{-1}) = -\frac{1}{e}$.

Alternative:

 $x = e^{-1}$

$$f''(x) = \frac{1}{x}$$

 $f''(e^{-1}) > 0$ so f is concave up at $x = e^{-1}$ and therefore a relative minimum

- 6. B (1993 BC14 appropriate for AB) f'(x) = 0 x = 0, 2, -3 f'(x) > 0 for (-∞, -3) and (2, ∞) f'(x) < 0 for (-3, 0) and (0, 2) f' changes from positive to negative only at x = -3 creating only one relative maximum.
- 7. E (1993 BC36 appropriate for AB) $h + 2\pi r = 30$ $h = 30 - 2\pi r$ $V = \pi r^2 h$ $V = \pi r^2 (30 - 2\pi r) = 2\pi (15r^2 - \pi r^3)$ for $0 < r < \frac{15}{\pi}$ $\frac{dV}{dr} = 2\pi (30r - 3\pi r^2)$ $r = \frac{10}{\pi}$

x = 0

0

$$\frac{dV}{dr} > 0$$
 for $\left(0, \frac{10}{\pi}\right)$ and $\frac{dV}{dr} < 0$ for $\left(\frac{10}{\pi}, \frac{15}{\pi}\right)$, creating a maximum volume at $r = \frac{10}{\pi}$.

8. B (1969 AB11/BC11)
Let *L* be the distance from
$$\left(x, -\frac{x^2}{2}\right)$$
 and $\left(0, -\frac{1}{2}\right)$ such that
 $L^2 = (x-0)^2 + \left(\frac{x^2}{2} - \frac{1}{2}\right)^2$
 $2L\frac{dL}{dx} = 2x + 2\left(\frac{x^2}{2} - \frac{1}{2}\right)(x)$
 $2L\frac{dL}{dx} = 2x + x^3 - x$
 $2L\frac{dL}{dx} = x + x^3$
 $\frac{dL}{dx} = \frac{x(1+x^2)}{2L} = 0$
 $x = 0$
 $\frac{dL}{dx} < 0$ for all $x < 0$ and $\frac{dL}{dx} > 0$ for all $x > 0$, so the minimum distance occurs at
 $0^2 + 2y = 0 \Rightarrow y = 0$

(1997 BC9 appropriate for AB) 9. A f increases for $0 \le x \le 6$ ($f' \ge 0$) and f decreases $6 \le x \le 8$ (f' < 0). By comparing the areas it is clear that f increases more than it decreases, so the absolute minimum must occur at the left endpoint, x = 0.

10. B (1988 BC45 appropriate for AB)

$$A = (2x)(2y) = 4xy$$
 and $y = \sqrt{4 - \frac{4}{9}x^2}$, so $A = 8x\sqrt{1 - \frac{1}{9}x^2}$,
 $A' = 8\left[\left(1 - \frac{1}{9}x^2\right)^{\frac{1}{2}} + \frac{1}{2}x\left(1 - \frac{1}{9}x^2\right)^{-\frac{1}{2}}\left(-\frac{2}{9}x\right)\right] = \frac{8}{9}\left(1 - \frac{1}{9}x^2\right)^{-\frac{1}{2}}\left(9 - 2x^2\right)$
 $A' = 0$ at $\frac{3}{\sqrt{2}}$; A' is undefined at $x = \pm 3$. The maximum area occurs when $x = \frac{3}{\sqrt{2}}$ and
 $y = \sqrt{2}$. The value of the largest area is $A = 4xy = 4\left(\frac{3}{\sqrt{2}}\right)(\sqrt{2}) = 12$

11. B (1988 AB33) Let $P(x) = x(2x-8) = 2x^2 - 8x$ P'(x) = 4x - 8 0 = 4x - 8 x = 2 P''(x) = 4 second derivative is positive for all x values, therefore P(x) has a minimum at x = 2; $P(2) = 2(2)^2 - 8(2) = -8$ *Alternatively:* P' changes from negative to positive at x = 2; $P(2) = 2(2)^2 - 8(2) = -8$

Free Response

12. (calculator not allowed) (2008 AB6b)

(b) $f'(x) = 0$ when $x = e$. The function f has a relative maximum at $x = e$ because $f'(x)$ changes from positive to negative at $x = e$.	$3 \begin{cases} 1: & x = e \\ 1: & \text{relative maximum} \\ 1: & \text{justification} \end{cases}$
--	---

13. (calculator allowed) (2009 AB2b)

(b)	R'(t) = 0 when $t = 0$ and $t = 1.36296$		1:	consider $R'(t) = 0$
	The maximum rate may occur at 0, $a = 1.36296$, or 2.	3 -	1: 1:	consider $R'(t) = 0$ interior critical point answer and justification
	R(0) = 0			justification
	R(a) = 854.527			
	R(2) = 120			
	The maximum rate occurs when $t = 1.362$ or 1.363.			

14. (calculator allowed) (2010 AB2d)

(d)) $P'(t) = 0$ when $t = 9.183503$ and $t = 10.816497$.					considers $P'(t) = 0$		
	t	P(t)		3-	3 1:	identifies candidates answer with		
	8	0						
	9.183503	5.088662			-	justification		
	10.816497	2.911338						
	12	8						

Entries are being processed most quickly at time t = 12.

15. (calculator not allowed) (2010 AB5c)

(c) $h'(x) = g'(x) - x = 0 \Rightarrow g'(x) = x$ On the interval $-2 \le x \le 2$, $g'(x) = \sqrt{4 - x^2}$. On this interval, g'(x) = x when $x = \sqrt{2}$. The only other solution to g'(x) = x is x = 3. h'(x) = g'(x) - x > 0 for $0 \le x < \sqrt{2}$ $h'(x) = g'(x) - x \le 0$ for $\sqrt{2} < x \le 5$ Therefore *h* has a relative maximum at $x = \sqrt{2}$ and *h* has neither a minimum nor a maximum at x = 3.

16. (calculator not allowed) (2009 AB6c)

(c) Since
$$f'(x) > 0$$
 on the intervals $-4 < x < -2$ and
 $-2 < x < 3\ln\left(\frac{5}{3}\right)$, f is increasing on the
interval $-4 \le x \le 3\ln\left(\frac{5}{3}\right)$.21: answer
1: justificationSince $f'(x) < 0$ on the interval $3\ln\left(\frac{5}{3}\right) < x < 4$,
 f is decreasing on the interval $3\ln\left(\frac{5}{3}\right) \le x \le 4$.
Therefore, f has an absolute maximum at
 $x = 3\ln\left(\frac{5}{3}\right)$.2

- $\begin{bmatrix} 1: & h'(x) \end{bmatrix}$
- 4]1: identifies $x = \sqrt{2}, 3$
 - 1: answer for $\sqrt{2}$ with analysis
 - 1: answer for 3 with analysis

(c) Since f(t) - g(t) changes sign from positive to negative only at t = 3, the candidates for the absolute maximum are at t = 0, 3, and 7.

t (hours)	Gallons of water
0	5000
3	$5000 + \int_0^3 f(t) dt - 250(3) = 5126.591$
7	$5126.591 + \int_{3}^{7} f(t) dt - 2000(4) = 4513.807$

The amount of water in the tank is greatest at 3 hours. At that time, the amount of water in the tank, rounded to the nearest gallon, is 5127 gallons.

- 1: identifies t = 3 as
- a candidate
- 1: integrand

- 5 1: amount of water at t=3
 - 1: amount of water at t = 7
 - 1: conclusion