Limits, Continuity, and Differentiability Solutions

We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate. Use your own judgment, based on the group of students, to determine the order and selection of questions to work in the session. Be sure to include a variety of types of questions (multiple choice, free response, calculator, and non-calculator) in the time allotted.

Quick Check for Understanding: Student graphs will vary. Sample answers given.

1. Sketch a function with the property that $f(a)$ exists but $\lim f(x)$ does not exist.

2. Sketch a function with the property that $\lim _{x \rightarrow a} f(x)$ exists but $f(a)$ does not exist.

3. Sketch a function with the property that $f(a)$ exists and $\lim _{x \rightarrow a} f(x)$ exists but $\lim _{x \rightarrow a} f(x) \neq f(a)$.

Multiple Choice

1. D (1985 AB5)

Since the limit is taken as $n \rightarrow \infty$ and the exponents in the numerator and denominator are equal, use the ratio of the leading coefficients to find that the limit is $\frac{4 n^{2}}{n^{2}}=4$.
2. B (2008 AB1)

Multiplying in the numerator and denominator yields the equivalent limit:
$\lim _{x \rightarrow \infty} \frac{-2 x^{2}+7 x-3}{x^{2}+2 x-3}=-2$.
3. B (1969 AB6/BC6)

This limit represents the definition of the derivative of the function, $f(x)=8 x^{8}$ at $x=\frac{1}{2}$.
$f^{\prime}(x)=64 x^{7} ; f^{\prime}\left(\frac{1}{2}\right)=\frac{1}{2}$.
4. D (1985 BC29 appropriate for AB)

Let $x-\frac{\pi}{4}=t . \lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin \left(x-\frac{\pi}{4}\right)}{x-\frac{\pi}{4}}=\lim _{t \rightarrow 0} \frac{\sin t}{t}=1$.
5. B (1988 AB29)

This limit represents the derivative of the function, $f(x)=\tan 3 x$. Using the chain rule, $f^{\prime}(x)=3 \sec ^{2}(3 x)$
6. C (1993 BC2 appropriate for AB)
$\lim _{x \rightarrow 0} \frac{2 x^{2}+1-1}{x^{2}}=2$
7. B (1988 AB23)

Since $f^{\prime}(x)=\cos x, f(x)=\sin x$. Also $f(0)=0, g(0)=0$, and $g^{\prime}(x)=1$, hence $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.
Alternatively, by L'Hopital's rule, $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{f^{\prime}(0)}{g^{\prime}(0)}=\frac{\cos 0}{1}=1$.
8. C (1993 AB29)
$\lim _{x \rightarrow 0} \frac{1-\cos \theta}{2 \sin ^{2} \theta}=\lim _{x \rightarrow 0} \frac{1-\cos \theta}{2\left(1-\cos ^{2} \theta\right.}=\lim _{x \rightarrow 0} \frac{1-\cos \theta}{2(1-\cos \theta)(1+\cos \theta)}=\lim _{x \rightarrow 0} \frac{1}{2(1+\cos \theta)}=\frac{1}{4}$.
Alternatively, by L'Hopital's rule, $\lim _{x \rightarrow 0} \frac{1-\cos \theta}{2 \sin ^{2} \theta}=\lim _{x \rightarrow 0} \frac{\sin \theta}{4 \sin \theta \cos \theta}=\lim _{x \rightarrow 0} \frac{1}{4 \cos \theta}=\frac{1}{4}$.
9. E (1985 AB41)

Using the given limit, there is not enough information to establish that $f^{\prime}(a)$ exists, nor that $f(x)$ is continuous or defined at $x=a$, nor that $f(a)=L$. For example, consider the function whose graph is the horizontal line $y=2$ with a hole at $x=a$. For this function $\lim _{x \rightarrow a} f(x)=2$ and none of the given statements are true
10. E (2003 AB3)

By definition of a horizontal asymptote, E is correct.
11. E (1993 AB35)

Since $y=2$ is a horizontal asymptote, the ratio of the leading coefficients must be 2 ;
therefore, $a=2$. Since there is a vertical asymptote at $x=-3$, set the denominator, $-3+c$, equal to 0 , so $c=3$ then $a+c=2+3=5$.
12. E (1988 AB27)

$$
\begin{aligned}
& f(3)=6(3)-9=9 \\
& \lim _{x \rightarrow 3^{-}} x^{2}=\lim _{x \rightarrow 3^{+}} 6 x-9=9
\end{aligned}
$$

Since $f(3)=\lim _{x \rightarrow 3} f(x)$ the function is continuous at $x=3$
$f^{\prime}(x)=\left\{\begin{array}{cc}2 x, & x<3 \\ 6, & x>3\end{array}\right.$ and $\lim _{x \rightarrow 3^{-}} 2 x=\lim _{x \rightarrow 3^{+}} 6=6$
Since the left and right limits of the derivative of the function are equivalent from either side of 3 , the function is differentiable at $x=3$.
13. D (2003 AB20)

Using substitution, the one sided limits as $x \rightarrow 3$ are both equal to 5 ; therefore, I and II are true. f is not differentiable at $x=3$ since $f^{\prime}(3)=1$ for $x \leq 3$ and $f^{\prime}(3)=4$ for $x>3$.
14. A (2008 AB6/BC6)

Use the top piece of the piecewise function for the limit since the bottom piece gives the value of $f(2)$. Using factoring, $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{x-2}=\lim _{x \rightarrow 2} x+2=4$. Since this limit does not equal $f(2)=1$, the function f is not continuous or differentiable at $x=2$.
15. C (1988 BC5 appropriate for AB)
$\lim _{x \rightarrow a} f(x)=f(a)$ for all values of a except 2 . $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(x-2)=0 \neq 1=f(2)$.
16. E (1969 AB18/BC18)

Thinking graphically, the absolute value function will have a sharp corner at 3 , thus the derivative does not exist at that point. The question can also be worked algebraically as follows:
The one sided limits are not equal:
$\lim _{x \rightarrow 3^{-}} \frac{f(x)-f(3)}{x-3}=\frac{2+|x-3|-2}{x-3}=-1$
$\lim _{x \rightarrow 3^{+}} \frac{f(x)-f(3)}{x-3}=\frac{2+|x-3|-2}{x-3}=1$.
Therefore, the value of $f^{\prime}(3)$ does not exist.
17. A (1993 AB5)

Consider $f(a)=\lim _{x \rightarrow a} f(x)$
Use factoring to simplify the function and then substitute for x :
$\lim _{x \rightarrow 2} \frac{x^{2}-4}{x+2}=\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{x+2}=x+2$; therefore, $f(-2)=-4$.
18. B (1997 AB15)

The left and right limits as $x \rightarrow a$ are both equal to 2 . The limit as $x \rightarrow b$ does not exist since the one-sided limits are not equivalent; therefore, A, C and D cannot be true either.
19. A (2003 AB13/BC13)

The graph of f is continuous at $x=a$; however, since the graph has a sharp turn at $x=a$, the function is not differentiable at $x=a$.
20. D (2003 AB79)

The one-sided limits as $x \rightarrow 4$ are equivalent for the graphs of f in I and II but not for III.
21. C (2008 AB77)
$\lim _{x \rightarrow 2^{-}} f(x)$ and $\lim _{x \rightarrow 2^{-}} f(x)$ exist; however, since they are not equivalent, the $\lim _{x \rightarrow 2} f(x)$ does not exist.
22. A (2003 BC81 appropriate for AB) $\sin (2) \approx 0.9093$

Free Response
23. 2009B AB3abc/BC3abc

$$
\text { (a) } \begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{f(h)-f(0)}{h}=\frac{2}{3} \\
& \lim _{x \rightarrow 0^{+}} \frac{f(h)-f(0)}{h}<0
\end{aligned}
$$

Since the one-sided limits do not agree f is not differentiable at $x=0$.
(b) $\frac{f(6)-f(a)}{6-a}=0$ when $f(a)=f(6)$. There are two values of a for which this is true.
(c) Yes, $a=3$. The function f is differentiable on the interval $3<x<6$ and continous on $3 \leq x \leq 6$. Also, $\frac{f(6)-f(3)}{6-3}=\frac{1-0}{6-3}=\frac{1}{3}$.
By the Mean Value Theorem, there is a value $c, 3<x<6$, such that $f^{\prime}(c)=\frac{1}{3}$.
$2\left\{\begin{array}{c}1: \begin{array}{c}\text { sets up difference quotient at } \\ \quad x=0\end{array} \\ 1: \text { answer with justification }\end{array}\right.$
24. 2003 AB6ac
(a) f is continuous at $x=3$ because
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=2$.
Therefore, $\lim _{x \rightarrow 3} f(x)=2=f(3)$.
(c) Since g is continuous at $x=3,2 k=3 m+2$.
$g^{\prime}(x)=\left\{\begin{aligned} \frac{k}{2 \sqrt{x+1} ;} & 0<x<3 \\ m ; & 3<x<5\end{aligned}\right.$
$\lim _{x \rightarrow 3^{-}} g^{\prime}(x)=\frac{k}{4}$ and $\lim _{x \rightarrow 3^{+}} g^{\prime}(x)=m$
Since these two limits exist and g is differentiable at $x=3$, the two limits are equal. Thus $\frac{k}{4}=m$.
$8 m=3 m+2 ; m=\frac{2}{5}$ and $k=\frac{8}{5}$

1: answer "yes" and equates the values of the left- and righthand limits
1: explanation involving limits

「1: $2 k=3 m+2$
$3-1: \frac{k}{4}=m$
1: values for k and m
25. 2011 AB 6 ab
(a) $\lim _{x \rightarrow 0^{-}}(1-2 \sin x)=1$
$\lim _{x \rightarrow 0^{+}} e^{-4 x}=1$
$f(0)=1$
So, $\lim _{x \rightarrow 0} f(x)=f(0)$.
Therefore f is continuous at $x=0$.
(b) $f^{\prime}(x)= \begin{cases}-2 \cos x & \text { for } x<0 \\ -4 e^{-4 x} & \text { for } x>0\end{cases}$
$-2 \cos x \neq-3$ for all values of $x<0$.
$-4 e^{-4 x}=-3$ when $x=-\frac{1}{4} \ln \left(\frac{3}{4}\right)>0$.
Therefore $f^{\prime}(x)=-3$ for $x=-\frac{1}{4} \ln \left(\frac{3}{4}\right)$.

2: analysis
$3 \begin{cases}2: & f^{\prime}(x) \\ 1: & \text { value of } x\end{cases}$

Student samples for question 25 a
Sample A:
Student earned both points for part (a). The student clearly identified the three attributes required to be true to justify continuity.

Sample B:
Student earned 1 point for part (a). The student begins the analysis of continuity by looking at the functional values on each side of 1 . The student does not use limits and does not consider $f(0)=1$, thus earning only 1 of the possible 2 points.

