Limits as $x \rightarrow a$ where $x=a$ is a vertical asymptote

Recall: Finding limits as $x \rightarrow a$

$$
\lim _{x \rightarrow a} f(x)=f(a), \text { if } f(x) \text { is continuous and } f(a) \text { is defined }
$$

Ex: $\lim _{x \rightarrow 2}\left(3 x^{2}-5 x+1\right)=$

If we cannot evaluate a limit by direct substitution, sometimes we can use algebraic techniques to rewrite the function so that we can evaluate the limit. Evaluate the following, and then sketch a graph to confirm your answers.
Ex. $\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x+3}=$

There will be time when the function is still undefined even after simplifying. In the case of a rational function,
$\lim _{x \rightarrow 2} \frac{x+3}{x^{2}+x-6}$

Find the limit. Draw a sketch for each problem. Do not use your calculator.

1. a. $\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=$
b. $\lim _{x \rightarrow 1^{-}} \frac{1}{x-1}$
c. $\lim _{x \rightarrow 1} \frac{1}{x-1}=$
2. $\lim _{x \rightarrow-3} \frac{1}{(x+3)^{2}}=$
3. $\lim _{x \rightarrow 5^{-}} \frac{1}{5-x}=$
4. $\lim _{x \rightarrow 5^{-}} \frac{1}{(5-x)^{2}}=$
5. $\lim _{x \rightarrow 2} \frac{-1}{(x-2)^{2}}=$
