Graphical Relationships Among f, f^{\prime}, and $f^{\prime \prime}$--Solutions

We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate. Use your own judgment, based on the group of students, to determine the order and selection of questions to work in the session. Be sure to include a variety of types of questions (multiple choice, free response, calculator, and non-calculator) in the time allotted.

Multiple Choice:

1. $\mathrm{B}(1988 \mathrm{AB} 8)$

Since $\frac{d y}{d x}>0, f(x)$ is increasing on the interval and since $\frac{d^{2} y}{d x^{2}}<0$, the graph of $f(x)$ is concave down. Only the interval $b<x<c$ meets both of these criteria.
2. $\mathrm{D}(1998 \mathrm{AB} 17)$
$f(1)=0, f^{\prime}(1)>0$ since f is increasing, and $f^{\prime \prime}(1)<0$ since f is concave down, so answer D provides the correct order for the relationships between f and its derivatives at $x=1$.
3. E (1969 AB30)

Since f is continuous and using the points given, $-1<x<3$ while $-2<y<4$, the graph of f intersects both axes.
4. E (1997 AB11)

Since $f^{\prime}<0$ for $x<-2$ and $x>2$, the graph of f will be decreasing on these intervals. Since $f^{\prime}>0$ for $-2<x<2, f$ is increasing on this interval. Since $f^{\prime}=0$ at $x=-2$ and changes from negative to positive, the graph of f has a local minimum at $x=-2$.
Since $f^{\prime}=0$ at $x=2$ and changes from positive to negative, the graph of f has a local maximum at $x=2$.
5. A (2003 AB18)
$g^{\prime} \leq 0$ on this interval
6. C (1985 BC20 appropriate for AB)
$f(x)$ changes concavity three times on $[2,7]$.
7. E (1985 BC43 appropriate for AB)

The only graph of f that is continuous, concave down, and matches the first derivative criteria is graph E .
8. E (1998 BC6 appropriate for AB)
$h^{\prime}(x)>0$ where $h(x)$ is increasing and $h^{\prime}(x)<0$ where $h(x)$ is decreasing. Also, $h^{\prime}(x)=0$ where $h(x)$ has a relative maximum and a relative minimum..
9. E (1997 BC8 appropriate for AB)
f^{\prime} changes from increasing to decreasing or vice versa six times.
10. C (1997 BC7 appropriate for AB)

Use the graph to determine that $f^{\prime}(3)=2$. Use point slope to determine the equation in answer C
11. E (2003 AB28)

Using the derivative information given, it can be determined that g is increasing at an increasing rate, therefore the only possible value for $g(6)$ using the answer choices is 27 .
12. B (2003 AB90)

Answer choices C,D, and E can be eliminated since those choices have a negative first derivative. Only answer B has $f(x)$ values increasing at a decreasing rate.

Free Response
13. 2000 AB 3

14. 2006 B AB2
(a) On the interval $1.7<x<1.9, f^{\prime}$ is
decreasing and thus f is concave down on $2 \begin{cases}1: \text { answer } \\ 1: & \text { reason }\end{cases}$ this interval.
15. 1991 AB5
(a) Absolute maximum at $x=0$

Absolute minimum at $x= \pm 2$
(b) Points of inflection at $x= \pm 1$ because the sign of $f^{\prime \prime}(x)$ changes at $x=1$

+1 : for each point correctly identified or pair of symmetric points
+1 : for each point correctly identified
+1 : justification (required on $[0,3)$ only)
-1 : for each additional point or pair of symmetric points
-1: for errors of:

- symmetry
- slopes on $[0,3)$
- concavity on $[0,3)$
- discontinuity on $[0,3)$
- $f(0), f(1), f(2)$
incorrect of extra
intercepts on $[0,3)$
No more than 1 point can be lost in any one category

16. $2004 \mathrm{~B} \mathrm{AB} 4 / \mathrm{BC} 4$
(a) $x=1$ and $x=3$ because the graph of f^{\prime} changes from increasing to decreasing at $x=1$, and changes from decreasing to increasing at $x=3$.
(b) The function f decreases from $x=-1$ to $x=4$, then increases from $x=4$ to $x=5$. Therefore, the absolute minimum value for $f 4$ is at $x=4$.
The absolute maximum value must occur at $x=-1$ or at $x=5$.
$f(5)-f(-1)=\int_{-1}^{5} f^{\prime}(t) d t<0$
Since $f(5)<f(-1)$, the absolute maximum value occurs at $x=-1$.

1: $x=1, x=3$
1: reason

1: indicates f decreases then increases
1: eliminates $x=5$ for maximum
1: absolute minimum at $x=4$
1: absolute maximum at $x=-1$

