

Graphical Relationships Among f, f', and f''--Solutions

We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate. Use your own judgment, based on the group of students, to determine the order and selection of questions to work in the session. Be sure to include a variety of types of questions (multiple choice, free response, calculator, and non-calculator) in the time allotted.

Multiple Choice:

1. B (1988 AB8)

Since $\frac{dy}{dx} > 0$, f(x) is increasing on the interval and since $\frac{d^2y}{dx^2} < 0$, the graph of f(x) is concave down. Only the interval b < x < c meets both of these criteria.

2. D (1998 AB17)

f(1) = 0, f'(1) > 0 since f is increasing, and f''(1) < 0 since f is concave down, so answer D provides the correct order for the relationships between f and its derivatives at x = 1.

3. E (1969 AB30)

Since f is continuous and using the points given, -1 < x < 3 while -2 < y < 4, the graph of f intersects both axes.

4. E (1997 AB11)

Since f' < 0 for x < -2 and x > 2, the graph of f will be decreasing on these intervals. Since f' > 0 for -2 < x < 2, f is increasing on this interval. Since f' = 0 at x = -2 and changes from negative to positive, the graph of f has a local minimum at x = -2. Since f' = 0 at x = 2 and changes from positive to negative, the graph of f has a local maximum at x = 2.

- 5. A (2003 AB18) $g' \le 0$ on this interval
- 6. C (1985 BC20 appropriate for AB)
 f(x) changes concavity three times on [2, 7].
- 7. E (1985 BC43 appropriate for AB) The only graph of f that is continuous, concave down, and matches the first derivative criteria is graph E.
- 8. E (1998 BC6 appropriate for AB) h'(x) > 0 where h(x) is increasing and h'(x) < 0 where h(x) is decreasing. Also, h'(x) = 0 where h(x) has a relative maximum and a relative minimum.

9. E (1997 BC8 appropriate for AB)

f' changes from increasing to decreasing or vice versa six times.

10. C (1997 BC7 appropriate for AB)

Use the graph to determine that f'(3) = 2. Use point slope to determine the equation in answer C

11. E (2003 AB28)

Using the derivative information given, it can be determined that g is increasing at an increasing rate, therefore the only possible value for g(6) using the answer choices is 27.

12. B (2003 AB90)

Answer choices C,D, and E can be eliminated since those choices have a negative first derivative. Only answer B has f(x) values increasing at a decreasing rate.

Free Response

13. 2000 AB3	
(a) $x = -1$	2 [1: answer
f'(x) changes from negative to positive at $x = -1$	1: justification
(b) $x = -5$	2 - 1: answer
f'(x) changes from positive to negative at $x = -5$	1: justification
 (c) f''(x) exists and f' is decreasing on the intervals (-7, -3), (2, 3), and (3, 5) 	$2 \begin{bmatrix} 1: & (-7, -3) \\ 1: & (2, 3) \cup (3, 5) \end{bmatrix}$

14.	2006B AB2			
(a)	On the interval $1.7 < x < 1.9$, f' is	ſ	1:	answer
	decreasing and thus f is concave down on	2	1:	reason
	this interval.			

15. 1991 AB5

13. 1991 / 105	
(a) Absolute maximum at $x=0$ Absolute minimum at $x=\pm 2$	 +1: for each point correctly identified -1: for each additional point or pair of symmetric points
 (b) Points of inflection at x = ±1 because the sign of f"(x) changes at x=1 	 +1: for each point correctly identified +1: justification (required on [0, 3) only) -1: for each additional point or pair of symmetric points
$(c) \qquad \qquad$	$3 = \begin{bmatrix} -1: \text{ for errors of:} \\ \bullet \text{ symmetry} \\ \bullet \text{ slopes on } [0, 3) \\ \bullet \text{ concavity on } [0, 3) \\ \bullet \text{ discontinuity on } [0, 3) \\ \bullet f(0), f(1), f(2) \\ \text{ incorrect of extra} \\ \text{ intercepts on } [0, 3) \\ \text{ No more than 1 point can} \\ \text{ be lost in any one category} \end{bmatrix}$

16. 2004B	3 AB4/BC4		
(a) $x=1$ and changes x=1, ar increasin	d $x=3$ because the graph of f' from increasing to decreasing at nd changes from decreasing to ng at $x=3$.	2	x = 1, x = 3 reason
(b) The fund x = 4, the formula of the formula	ction <i>f</i> decreases from $x = -1$ to hen increases from $x = 4$ to $x = 5$. re, the absolute minimum value for <i>f</i> = 4. olute maximum value must occur at or at $x = 5$. $f(-1) = \int_{-1}^{5} f'(t) dt < 0$ f'(5) < f(-1), the absolute maximum ccurs at $x = -1$.	4 - 1: 1: 1: 1:	indicates <i>f</i> decreases then increases eliminates $x=5$ for maximum absolute minimum at $x=4$ absolute maximum at $x=-1$