Calculus AB

Name_____

RECALL: If y = f(x), then the derivative $y' = f'(x) = \frac{dy}{dx} = \frac{d}{dx} (f(x)) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

RULES:

- I. The derivative of a constant is 0: $\frac{d}{dx}(c) = 0$
 - Ex. y = 3, y' =**Think of the SLOPE of a horizontal line!**
- II. Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$, where n is a constant

III. Constant Multiplication Rule: $\frac{d}{dx}(cu) = c\frac{d}{dx}(u)$, *u* is a function of *x* and *c* = constant Ex 1. $y = 3x^4$ Ex 2. $y = 2x^9$

IV. Sum or Difference Rule: $\frac{d}{dx}(u \pm v) = \frac{d}{dx}(u) \pm \frac{d}{dx}(v)$, where u and v are functions of x

This rule can be extended to any number of terms.

Ex 1.
$$y = 9x^2 - 14x + 7$$

Ex 2. $y = 6x^7 + 4x^5 - x$

V. Product Rule: $\frac{d}{dx}(uv) = u \frac{d}{dx}(v) + v \frac{d}{dx}(u)$, where u and v are functions of x

The product rule song Tune of Mary Had a Little Lamb	Ex 1. $y = (x^2 + 1)(x^3 + 3)$
u d(v) plus v d(u) Product Rule! Product Rule! u d(v) plus v d(u) The product rule is cool!	Ex 2. $y = (3x^2 - 2x)(2x^3 + x)$

VI. Quotient Rule: $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{d}{dx}(u)}{u}$	$\frac{du}{v^2} - u \frac{d}{dx}(v)$ $OR \left(\frac{u}{v}\right)' = \frac{lo}{dx}$	$\frac{d hi - hi d lo}{lo lo}, u and v are functions of x$
Quotient Rule Song Tune of Camptown Races	Ex 1. $y = \frac{x^2 + 1}{x^2 - 1}$	
lo d (hi) less hi d (lo) lo lo , lo lo The quotient rule's the way to go To show how much we know!		
Ex 2. $y = \frac{x^3}{2x-5}$		Ex 3. $y = \frac{2}{x^2}$ (Hint: Rewrite as negative exponent)

Ex 4.
$$y = \frac{(2x+4)(x^3-x)}{x^2}$$
 (Hint: Multiply out the numerator first)

*** If f is even, the f'is odd. If f is odd, then f'is even.***

Second, third, and higher order derivatives	Derivatives in Terms of Other Variables
$y = x^{4} - 3x^{3} + 4x^{2} + 9$ $y' = f'(x) = \frac{dy}{dx} =$	$A = \pi r^2$
	The derivative of A with respect to r.
$y'' = f''(x) = \frac{d^2y}{dx^2} =$	$\frac{dA}{dr} =$
$y''' = f'''(x) = \frac{d^3y}{dx^3} =$	$V = \frac{4}{3}\pi r^3$
$y^{iv} = f^4(x) = \frac{d^4y}{dx^4} =$	The derivative of V with respect to r.
$y^{\nu} = f^5(x) = \frac{d^5 y}{dx^5} =$	$\frac{dV}{dr} =$
All successive derivatives are equal to 0.	