\qquad

I. Where does a derivative fail to exist?

1. At any corner

(where the one-sided derivatives differ)

$[-3,3]$ by $[-2,2]$
Figure 3.11 There is a "corner" at $x=0$.
3. At any point where the tangent line is vertical (where the slopes of the secant lines approach either $-\infty$ or ∞ from both sides)

$[-3,3]$ by $[-2,2]$
Figure 3.13 There is a vertical tangent line at $x=0$.
2. At any cusp
(where the slopes of the secant lines approach $-\infty$ from one side and ∞ from the other side)

$[-3,3]$ by $[-2,2]$
Figure 3.12 There is a "cusp" at $x=0$.
4. At any point of discontinuity
(this will cause one or both of the one-sided derivatives to be nonexistent)

$[-3,3]$ by $[-2,2]$
Figure 3.14 There is a discontinuity at $x=0$.
5. At an endpoint (A one-sided derivative may exist)

II. Derivatives of piece-wise functions.

Ex: $f(x)= \begin{cases}x^{2} & \text { if } x \leq 0 \\ 2 x & \text { if } x>0\end{cases}$

III. Theorems

1. Differentiability implies LOCAL LINEARITY

A function that is differentiable at " a " closely resembles its own tangent line very close to " a ". That is the curve will "straighten out" as we zoom in on it at a point of differentiability.

Is either of these functions differentiable at $=0$?
a. $f(x)=|x|$
b. $g(x)=\sqrt{x^{2}+.0001}-.01$

2. Differentiability Implies Continuity

If \boldsymbol{f} has a derivative at $x=a$, then \boldsymbol{f} is continuous at $x=a$.
Discontinuity implies non-differentiability
Continuity DOES NOT imply differentiability ex: $f(x)=|x|$

3. Intermediate Value Theorem for Derivatives

If \boldsymbol{a} and \boldsymbol{b} are any two points in an interval on which \boldsymbol{f} is differentiable, then \boldsymbol{f}^{\prime} takes on every value between $\boldsymbol{f}^{\prime}(\boldsymbol{a})$ and $\boldsymbol{f}^{\prime}(\boldsymbol{b})$.

IV. Numerical Derivatives on a Calculator

On the calculator, use Math 8 function
*In older calculator, it will appear: n Deriv(function, x , value)
*In newer calculator, it will appear: $\left.\frac{d}{d()}(f(x))\right|_{(~)=(~)}$
Ex: Find the derivative of $y=x^{3}-3 x+3$ at $x=2$
*To graph a derivative with the original function in y_{1}, use the Math 8 function in y_{2}.

$$
y_{2}=n \operatorname{Deriv}\left(y_{1}, x, x\right) \quad \text { or } \quad y_{2}=\left.\frac{d}{d x}\left(y_{2}\right)\right|_{x=x}
$$

