AP CALCULUS AB – AP REVIEW 3

Work the following on **notebook paper**, showing all work. Use your calculator only on problems 27 and 34.

- 27. (Calc) The tide removes sand from Sandy Point Beach at a rate modeled by the function *R*, given by
 - $R(t) = 2 + 5\sin\left(\frac{4\pi t}{25}\right)$. A pumping station adds sand to the beach at a rate modeled by the function *S*, given by $S(t) = \frac{15t}{1+3t}$. Both R(t) and S(t) have units of cubic yards per hour and *t* is measured in hours for $0 \le t \le 6$. At time t = 0, the beach contains 2500 cubic yards of sand.
- (a) How much sand will the tide remove from the beach during this 6-hour period? Indicate units of measure.
- (b) Write an expression for Y(t), the total number of cubic yards of sand on the beach at time t.
- (c) Find the rate at which the total amount of sand on the beach is changing at time t = 4.
- (d) For $0 \le t \le 6$, at what time t is the amount of sand on the beach a minimum? What is the minimum value? Justify your answer.

28. If $x^2 + xy + y^3 = 0$, then, in terms of x and y, $\frac{dy}{dx} =$							
$(A) - \frac{2x+y}{x+3y^2}$	$(B) - \frac{x+3y^2}{2x+y}$	$(C) - \frac{2x}{1+3y^2}$	$(D) - \frac{2x}{x+3y^2}$	(E) $-\frac{2x+y}{x+3y^2-1}$			
29. $\int_{1}^{2} \frac{x^2 - 1}{x + 1} dx =$							
(A) $\frac{1}{2}$	(B) 1	(C) 2	(D) $\frac{5}{2}$	(E) ln 3			
30. If $\lim_{x \to a} f(x) = L$, where L is a real number, which of the following must be true?							
(A) $f'(a)$ exists (B) $f(x)$ is continuous at $x = a$. (C) $f(x)$ is defined at $x = a$.							
(D) $f(a) = L$ (E) None of the above							
$31. \ \frac{d}{dx} \int_{2}^{x} \sqrt{1+t^2} dt$							
(A) $\frac{x}{\sqrt{1+x^2}}$	(B) $\sqrt{1+x^2}-5$	(C) $\sqrt{1+x^2}$ (I	D) $\frac{x}{\sqrt{1+x^2}} - \frac{1}{\sqrt{5}}$	(E) $\frac{1}{2\sqrt{1+x^2}} - \frac{1}{2\sqrt{5}}$			
32. The average value of $f(x) = x^2 \sqrt{x^3 + 1}$ on the closed interval [0, 2] is							
(A) $\frac{26}{9}$	(B) $\frac{13}{3}$	(C) $\frac{26}{3}$	(D) 13	(E) 26			
33. If $y = x^2 e^x$, then $\frac{dy}{dx} =$							
(A) $2xe^x$	(B) $x\left(x+2e^{x}\right)$	(C) $xe^{x}(x+$	(D) $2x + e^{-x}$	^x (E) $2x + e$			

34. (Calc) A 12,000-liter tank of water is filled to capacity. At time t = 0, water begins to drain out of the tank at a rate modeled by r(t), measured in liters per hour, where r is given by the piece-wise defined function

$$r(t) = \begin{cases} \frac{600t}{t+3} & \text{for } 0 \le t \le 5\\ 1000e^{-0.2t} & \text{for } t > 5 \end{cases}$$

(a) Is *r* continuous at t = 5? Show the work that leads to your answer.

- (b) Find the average rate at which water is draining from the tank between time t = 0 and time t = 8 hours.
- (c) Find r'(3). Using correct units, explain the meaning of that value in the context of this problem.
- (d) Write, but do not solve, an equation involving an integral to find the time *A* when the amount of water in the tank is 9000 liters.

35. If $y = \frac{\ln x}{x}$, then $\frac{dy}{dx} =$							
(A) $\frac{1}{x}$	(B) $\frac{1}{x^2}$	(C) $\frac{\ln x - 1}{x^2}$	(D) $\frac{1 - \ln x}{x^2}$	(E) $\frac{1+\ln x}{x^2}$			
$36. \int \frac{x}{\sqrt{3x^2}}$	$\frac{dx}{dx} = \frac{dx}{dx}$						
(A) $\frac{1}{9}(3x^2 +$	$(-5)^{3/2} + C$	(B) $\frac{1}{4} \left(3x^2 + 5 \right)^{\frac{3}{2}} + C$	(C)	$\frac{1}{12} \left(3x^2 + 5 \right)^{\frac{1}{2}} + C$			
(D) $\frac{1}{3}(3x^2 +$	$(-5)^{1/2} + C$	(E) $\frac{3}{2} \left(3x^2 + 5 \right)^{\frac{1}{2}} + C$					
$37. \lim_{h \to 0} \frac{\tan}{2}$	$\frac{3(x+h)-\tan\left(3x\right)}{h} =$						
(A) 0	(B) $3\sec^2(3x)$	(C) $\sec^2(3x)$	(D) $3\cot(3x)$	(E) nonexistent			
38. What is the average value of y for the part of the curve $y = 3x - x^2$ which is in the first quadrant?							
(A) – 6	(B) – 2	(C) $\frac{3}{2}$	(D) $\frac{9}{4}$	(E) $\frac{9}{2}$			
39. If $\int_{1}^{10} f(x) dx = 4$ and $\int_{10}^{3} f(x) dx = 7$, then $\int_{1}^{3} f(x) dx = 1$							
(A) – 3	(B) 0	(C) 3	(D) 10	(E) 11			
40.							
The sides of the rectangle above increase in such a way that $\frac{dz}{dt} = 1$ and $\frac{dx}{dt} = 3\frac{dy}{dt}$.							
At the instant when $x = 4$ and $y = 3$, what is the value of $\frac{dx}{dt}$?							
(A) $\frac{1}{3}$	(B) 1	(C) 2 (D) $\sqrt{\frac{1}{2}}$	5 (E)	5			