AP CALCULUS AB - AP REVIEW 2

Work the following on notebook paper, showing all work. Use your calculator only on problems 13, 20, and 22.
13. (Calc) A particle moves along the x-axis with velocity at time $t \geq 0$ given by $v(t)=-1+e^{1-t}$.
(a) Find the acceleration of the particle at time $t=3$.
(b) Is the speed of the particle increasing at time $t=3$? Give a reason for your answer.
(c) Find all values of t at which the particle changes direction. Justify your answer.
(d) Find the total distance traveled by the particle over the time interval $0 \leq t \leq 3$.
14. If $f(x)=x \sqrt{2 x-3}$, then $f^{\prime}(x)=$
(A) $\frac{3 x-3}{\sqrt{2 x-3}}$
(B) $\frac{x}{\sqrt{2 x-3}}$
(C) $\frac{1}{\sqrt{2 x-3}}$
(D) $\frac{-x+3}{\sqrt{2 x-3}}$
(E) $\frac{5 x-6}{2 \sqrt{2 x-3}}$
15. If $\int_{a}^{b} f(x) d x=a+2 b$, then $\int_{a}^{b}(f(x)+5) d x=$
(A) $a+2 b+5$
(B) $5 b-5 a$
(C) $7 b-4 a$
(D) $7 b-5 a$
(E) $7 b-6 a$
16. $\frac{d}{d x}\left[\cos ^{2}\left(x^{3}\right)\right]=$
(A) $6 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
(B) $6 x^{2} \cos \left(x^{3}\right)$
(C) $\sin ^{2}\left(x^{3}\right)$
(D) $-6 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
(E) $-2 \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
17. An equation of the line tangent to the graph of $y=\cos (2 x)$ at $x=\frac{\pi}{4}$ is
(A) $y-1=-\left(x-\frac{\pi}{4}\right)$
(B) $y-1=-2\left(x-\frac{\pi}{4}\right)$
(C) $y=2\left(x-\frac{\pi}{4}\right)$
(D) $y=-\left(x-\frac{\pi}{4}\right)$
(E) $y=-2\left(x-\frac{\pi}{4}\right)$
18. Let f be a function defined for all real numbers x. If $f^{\prime}(x)=\frac{\left|4-x^{2}\right|}{x-2}$, then f is decreasing on the interval
(A) $(-\infty, 2)$
(B) $(-\infty, \infty)$
(C) $(-2,4)$
(D) $(-2, \infty)$
(E) $(2, \infty)$
19. Let f be a differentiable function such that $f(3)=2$ and $f^{\prime}(3)=5$. If the tangent line to the graph of f at $x=3$ is used to find an approximation to a zero of f, that approximation is
(A) 0.4
(B) 0.5
(C) 2.6
(D) 3.4
(E) 5.5
20. (Calc) For $0 \leq t \leq 31$, the rate of change of the number of mosquitoes on Tropical Island at time t days is modeled by $R(t)=5 \sqrt{t} \cos \left(\frac{t}{5}\right)$ mosquitoes per day. There are 1000 mosquitoes on Tropical Island at time $t=0$.
(a) Show that the number of mosquitoes is increasing at time $t=6$.
(b) At time $t=6$, is the number of mosquitoes increasing at an increasing rate, or is the number of mosquitoes increasing at a decreasing rate? Give a reason for your answer.
(c) According to the model, how many mosquitoes will be on the island at time $t=31$? Round your answer to the nearest whole number.
(d) To the nearest whole number, what is the maximum number of mosquitoes for $0 \leq t \leq 31$? Show the analysis that leads to your conclusion.
21. $\int_{0}^{\pi / 3} \sin (3 x) d x=$
(A) -2
(B) $-\frac{2}{3}$
(C) 0
(D) $\frac{2}{3}$
(E) 2
22. (Calc)

x	0	0.5	1.0	1.5	2.0
$f(x)$	3	3	5	8	13

A table of values for a continuous function f is shown above. If four equal subintervals of $[0,2]$ are used, which of the following is the trapezoidal approximation of $\int_{0}^{2} f(x) d x$?
(A) 8
(B) 12
(C) 16
(D) 24
(E) 32
23. $\int_{1}^{2} \frac{1}{x^{3}} d x=$
(A) $-\frac{7}{8}$
(B) $-\frac{3}{4}$
(C) $\frac{15}{64}$
(D) $\frac{3}{8}$
(E) $\frac{15}{16}$
24. If $y=\frac{3}{4+x^{2}}$, then $\frac{d y}{d x}=$
(A) $\frac{-6 x}{\left(4+x^{2}\right)^{2}}$
(B) $\frac{3 x}{\left(4+x^{2}\right)^{2}}$
(C) $\frac{6 x}{\left(4+x^{2}\right)^{2}}$
(D) $\frac{-3}{\left(4+x^{2}\right)^{2}}$
(E) $\frac{3}{2 x}$
25. The function defined by $f(x)=x^{3}-3 x^{2}$ for all real numbers x has a relative maximum at $x=$?
(A) -2
(B) 0
(C) 1
(D) 2
(E) 4
26. $\frac{d}{d x}\left(\frac{1}{x^{3}}-\frac{1}{x}+x^{2}\right)$ at $x=-1$ is
(A) -6
(B) -4
(C) 0
(D) 2
(E) 6

