AP CALCULUS AB - REVIEW 1

Work these on notebook paper, showing all work. Do not use your calculator.

1. Let f be a function defined on the closed interval $-5 \leq x \leq 5$ with $f(1)=3$. The graph of f^{\prime}, the derivative of f, consists of two semicircles and two line segments, as shown above.
(a) For $-5<x<5$, find all values x at which f has a relative maximum. Justify your answer.
(b) For $-5<x<5$, find all values x at which the graph of f has a point of inflection. Justify your answer.
(c) Find all intervals on which the graph of f is concave up and also has positive slope. Explain your reasoning.

(d) Find the absolute minimum value of $f(x)$ over the closed interval $-5 \leq x \leq 5$. Explain your reasoning.
2. What is the x-coordinate of the point of inflection on the graph of $y=\frac{1}{3} x^{3}+5 x^{2}+24$?
(A) 5
(B) 0
(C) $-\frac{10}{3}$
(D) -5
(E) -10
3. If $x^{2}+x y=10$, then when $x=2, \frac{d y}{d x}=$
(A) $-\frac{7}{2}$
(B) -2
(C) $\frac{2}{7}$
(D) $\frac{3}{2}$
(E) $\frac{7}{2}$
4. A particle moves along the x-axis so that its position at time t is given by $x(t)=t^{2}-6 t+5$. For what value of t is the velocity of the particle zero?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
5. The graph of a twice-differentiable function f is shown in the figure below. Which of the following is true?
(A) $f(1)<f^{\prime}(1)<f^{\prime \prime}(1)$
(B) $f(1)<f^{\prime \prime}(1)<f^{\prime}(1)$
(C) $f^{\prime}(1)<f(1)<f^{\prime \prime}(1)$
(D) $f^{\prime \prime}(1)<f(1)<f^{\prime}(1)$

(E) $f^{\prime \prime}(1)<f^{\prime}(1)<f(1)$
6. Consider the curve given by $x y^{2}-x^{3} y=6$.
(a) Find $\frac{d y}{d x}$.
(b) Find all points on the curve whose x-coordinate is 1 , and write an equation for the tangent line at each of these points.
(c) Find the x-coordinate of each point on the curve where the tangent line is vertical.
7. An equation of the line tangent to the graph of $y=x+\cos x$ at the point $(0,1)$ is
(A) $y=2 x+1$
(B) $y=x+1$
(C) $y=x$
(D) $y=x-1$
(E) $y=0$
8. What is the instantaneous rate of change at $x=2$ of the function f given by $f(x)=\frac{x^{2}-2}{x-1}$?
(A) -2
(B) $\frac{1}{6}$
(C) $\frac{1}{2}$
(D) 2
(E) 6
9. If $f(x)=\tan (2 x)$, then $f^{\prime}\left(\frac{\pi}{6}\right)=$
(A) $\sqrt{3}$
(B) $2 \sqrt{3}$
(C) 4
(D) $4 \sqrt{3}$
(E) 8
10.

x	2	5	7	8
$f(x)$	10	30	40	20

The function f is continuous on the closed interval $[2,8]$ and has values that are given in the table above. Using the subintervals [2, 5], [5, 7], and [7, 8], what is the trapezoidal approximation of $\int_{2}^{8} f(x) d x$?
(A) 110
(B) 130
(C) 160
(D) 190
(E) 210
11. Let f be the function given by $f(x)=|x|$. Which of the following statements about f are true?
I. f is continuous at $x=0$.
II. f is differentiable at $x=0$.
III. f has an absolute minimum at $x=0$.
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only
12. If g is a differentiable function such that for all real numbers x,

$$
g(x)<0 \text { and } f^{\prime}(x)=\left(x^{2}-4\right) g(x), \text { which of the following is true? }
$$

(A) f has a relative maximum at $x=-2$ and a relative minimum at $x=2$.
(B) f has a relative minimum at $x=-2$ and a relative maximum at $x=2$.
(C) f has a relative minimum at $x=-2$ and at $x=2$.
(D) f has a relative maximum at $x=-2$ and at $x=2$.
(E) It cannot be determined if f has any relative extrema.

