Section 3.4
Answers to Evens on Assignment \#3
8. $Q(t)=200(30-t)^{2}$
$=200\left(900-60 t+t^{2}\right)$

$$
=180,000-12,000 t+200 t^{2}
$$

$Q^{\prime}(t)=-12,000+400 t$
The rate of change of the amount of water in the tank after 10 minutes is $Q^{\prime}(10)=-8000$ gallons per minute.
Note that $Q^{\prime}(10)<0$, so the rate at which the water is running out is positive. The water is running out at the rate of 8000 gallons per minute.
The average rate for the first 10 minutes is

$$
\begin{aligned}
\frac{Q(10)-Q(0)}{10-0} & =\frac{80,000-180,000}{10} \\
& =-10,000 \mathrm{gal} / \mathrm{min} .
\end{aligned}
$$

The water is flowing out at an average rate of 10,000 gallons per minute over the first 10 min .
16. Moon:

$$
\begin{array}{r}
s(t)=0 \\
832 t-2.6 t^{2}=0 \\
2.6 t(320-t)=0 \\
t=0 \text { or } t=320
\end{array}
$$

It takes 320 seconds to return.
Earth:

$$
\begin{array}{r}
s(t)=0 \\
832 t-16 t^{2}=0 \\
16 t(52-t)=0 \\
t=0 \text { or } t=52
\end{array}
$$

It takes 52 seconds to return.
18. (a) $190 \mathrm{ft} / \mathrm{sec}$
(b) 2 seconds
(c) After 8 seconds, and its velocity was $0 \mathrm{ft} / \mathrm{sec}$ then
(d) After about 11 seconds, and it was falling $90 \mathrm{ft} / \mathrm{sec}$ then
(e) About 3 seconds (from the rocket's highest point)
(f) The acceleration was greatest just before the engine stopped. The acceleration was constant from $t=2$ to $t=11$, while the rocket was in free fall.

## Calculus

20. (a) $v(t)=\frac{d s}{d t}=\frac{d}{d t}\left(-t^{3}+7 t^{2}-14 t+8\right)$
$v(t)=-3 t^{2}+14 t-14$
(b) $a(t)=\frac{d v}{d t}=\frac{d}{d t}\left(-3 t^{2}+14 t-14\right)$
$a(t)=-6 t+14$
(c) $v(t)=-3 t^{2}+14 t-14=0$
$t \approx 1.451,3.215$
(d) The particle starts at the point $s=8$ when $t=0$ and moves left until it stops at $s=-0.631$ when $t=1.451$, then it moves right to the point $s=2.113$ when $t=3.215$ where it stops again, and finally continues left from there on.
21. $a(t)=v^{\prime}(t)=6 t^{2}-18 t+12$

Find when acceleration is zero.
$6 t^{2}-18 t+12=0$
$6\left(t^{2}-3 t+2\right)=0$
$6(t-1)(t-2)=0$
$t=1$ or $t=2$
At $t=1$, the speed is $|v(1)|=|0|=0 \mathrm{~m} / \mathrm{sec}$.
At $t=2$, the speed is $|v(2)|=|-1|=1 \mathrm{~m} / \mathrm{sec}$.
34. (a) $\frac{d V}{d r}=\frac{d}{d r}\left(\frac{4}{3} \pi r^{3}\right)=4 \pi r^{2}$

When $r=2, \frac{d v}{d r}=4 \pi(2)^{2}=16 \pi$ cubic feet of volume per foot of radius.
(b) The increase in the volume is
$\frac{4}{3} \pi(2.2)^{3}-\frac{4}{3} \pi(2)^{3} \approx 11.092$ cubic feet.

