## Analyzing $f, f^{\prime}$, and $f^{\prime \prime}$ Solutions

We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate. Use your own judgment, based on the group of students, to determine the order and selection of questions to work in the session. Be sure to include a variety of types of questions (multiple choice, free response, calculator, and non-calculator) in the time allotted.

## Multiple Choice

1. D (1993 BC9 appropriate for AB)

Since $f^{\prime}(x)=\frac{2}{3} x^{\frac{-1}{3}}=\frac{2}{3 \sqrt[3]{x}}, f^{\prime}(0)$ does not exist.
2. B (1973 AB22)

Determine the interval(s) where $f^{\prime \prime}(x)>0$.
$f^{\prime}(x)=15 x^{4}-60 x^{2}$
$f^{\prime \prime}(x)=60 x^{3}-120 x$
$60 x\left(x^{2}-2\right)=0$
$x=0$ or $x= \pm \sqrt{2}$
$f^{\prime \prime}(x)=60 x^{3}-120 x>0$ on the intervals $(-\sqrt{2}, 0) \cup(\sqrt{2}, \infty)$.
3. D (1997 AB22)

Determine the interval(s) where $f^{\prime}(x)>0$.
$f^{\prime}(x)=\left(x^{2}-3\right)\left(-e^{-x}\right)+(2 x)\left(e^{-x}\right)$
$f^{\prime}(x)=-e^{-x}\left(x^{2}-2 x-3\right)$
$0=-e^{-x}(x-3)(x+1)$
$x=3$ and $x=-1$
$f^{\prime}(x)>0$ on $(-1,3)$
4. C (1998 AB19)

A point of inflection occurs when $f^{\prime \prime}(x)$ changes sign. In this case, $f^{\prime \prime}(x)$ has a double root at $x=2$ and changes sign only at $x=-1$ and $x=0$.
5. C (1998 AB22)

The function, $f(x)$, is increasing when $f^{\prime}(x)>0$.
$f^{\prime}(x)=4 x^{3}+2 x$
$2 x\left(2 x^{2}+1\right)=0$
$x=0$
$f^{\prime}(x)=4 x^{3}+2 x$ is positive on the interval $(0, \infty)$.
6. E (1988 AB4)

The function, $y$, is concave downward when $y^{\prime \prime}$ is negative.
$y^{\prime \prime}=\frac{-10}{(x-2)^{3}}$ is negative for $x>2$.
7. B (1993 BC22)

The function $f$ is decreasing when $f^{\prime}$ is negative.
$f^{\prime}(x)=x^{2} e^{x}+2 x e^{x}$
$x e^{x}(x+2)=0$
$x=0$ or $x=-2$
Thus $f^{\prime}(x)<0$ on the interval $(-2,0)$.
8. B (1997 BC80 appropriate for AB)

Using the derivative function on the calculator, graph $f^{\prime}$. Calculate the smallest $x$ value where $f^{\prime}$ changes from increasing to decreasing or decreasing to increasing.
or
Using the derivative function on the calculator, graph $f^{\prime \prime}(x)$. Calculate the smallest $x$ value where $f^{\prime \prime}(x)$ changes sign.
9. E (2003 BC83 appropriate for AB )

Rolle's Theorem guarantees an extreme value on the interval $(0,4)$ given that $f$ is continuous and differentiable on the closed interval $[0,4]$ and $f(0)=f(4)=2$.
10. C (2003 BC86 appropriate for AB )

Analyze the graph of $f^{\prime}(x)$ to determine the number of times $f^{\prime}(x)$ changes from increasing to decreasing or decreasing to increasing on the interval $(-1.8,1.8)$
or
Use the derivative function on the calculator to graph $f^{\prime \prime}(x)$ to determine the number of times $f^{\prime \prime}(x)$ changes signs on the interval $(-1.8,1.8)$
11. C (1997 AB85)
$f^{\prime}(x)$ changes sign from positive to negative only at $x=0.91$.

## 12. B (1998 AB89)

The graph of $y=x^{2}-4$ is a parabola that changes from positive to negative at $x=-2$ and from negative to positive at $x=2$. Since $g$ is always negative, $f^{\prime}$ changes sign opposite to the way $y=x^{2}-4$ does. Thus, $f$ has a relative minimum at $x=-2$ and a relative maximum at $x=2$.

Free Response
13. $1975 \mathrm{AB} 4 / \mathrm{BC} 1$
(a) $y^{\prime}=1+\cos x$
$0=1+\cos x$
No point values available.
:
$-1=\cos x$
$\pi=x$
At $x=\pi$, there is not an extreme value since $y^{\prime}$ does not change signs there.
$y\left(-\frac{\pi}{2}\right)=-\frac{\pi}{2}-1 \quad y\left(\frac{3 \pi}{2}\right)=\frac{3 \pi}{2}-1$
Absolute minimum value at $\left(-\frac{\pi}{2},-\frac{\pi}{2}-1\right)$
Absolute maximum value at

$$
\left(\frac{3 \pi}{2}, \frac{3 \pi}{2}-1\right)
$$

(b) $y^{\prime \prime}=-\sin x$
$-\sin x=0$
$x=0, \pi$
$y$ has points of inflection at $(0,0)$ and $(\pi, \pi)$ since $y^{\prime \prime}$ changes signs at $x=0$ and $x=\pi$ on the interval from $\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$.
(c)

(a) $f(x)=x e^{-2 x}$
$f^{\prime}(x)=e^{-2 x}-2 x e^{-2 x}$

$$
e^{-2 x}(1-2 x)=0
$$

$e^{-2 x} \neq 0$ and $x=\frac{1}{2}$

$f$ is increasing on $\left(0, \frac{1}{2}\right)$ since $f^{\prime}(x)>0$ in this interval and $f$ is decreasing on $\left(\frac{1}{2}, 10\right)$ since $f^{\prime}(x)<0$ on this interval.
(b) $f\left(\frac{1}{2}\right)=\frac{1}{2 e}$ is a relative maximum from part (a)
$f(0)=0$
$f(10)=\frac{10}{e^{20}}$
Therefore, $\left(\frac{1}{2}, \frac{1}{2 e}\right)$ is the absolute maximum and $(0,0)$ is the absolute minimum.

No point values available.
15. 1999 AB4
(a) Slope at $x=0$ is $f^{\prime}(0)=-3$

$$
\begin{gathered}
\text { At } x=0, y=2 \\
y-2=-3(x-0)
\end{gathered}
$$

(b) No. Whether $f^{\prime \prime}(x)$ changes sign at $x=0$ is not known. The only given values of $f^{\prime \prime}(x)$ is $f^{\prime \prime}(0)=0$.
(c) $g^{\prime}(x)=e^{-2 x}\left(3 f(x)+2 f^{\prime}(x)\right)$
$g^{\prime}(0)=e^{0}\left(3 f(0)+2 f^{\prime}(0)\right)$
$3(2)+2(-3)=0$
$y-4=0(x-0)$
$y=4$
(d) $g^{\prime}(x)=e^{-2 x}\left(3 f(x)+2 f^{\prime}(x)\right)$

$$
\begin{aligned}
& g^{\prime \prime}(x)=\left(-2 e^{-2 x}\right)\left(3 f(x)+2 f^{\prime}(x)\right) \\
& \quad \quad+e^{-2 x}\left(3 f^{\prime}(x)+2 f^{\prime \prime}(x)\right) \\
& =e^{-2 x}\left(-6 f(x)-f^{\prime}(x)+2 f^{\prime \prime}(x)\right) \\
& g^{\prime \prime}(0)=e^{0}[(-6)(2)-(-3)+2(0)]=-9 \\
& \text { Since } g^{\prime}(0)=0 \text { and } g^{\prime \prime}<0, g \text { does have } \\
& \text { a local maximum at } x=0
\end{aligned}
$$

1: equation
$2\left\{\begin{array}{l}\text { 1: answer } \\ 1:\end{array}\right.$
1: explanation

2 1: $\begin{array}{ll}1: & g^{\prime}(0)\end{array}$
1: equation

2: verify derivative $0 / 2$ product or chain rule error
4 - <-1> algebra error
1: $g^{\prime}(0)=0$ and $g^{\prime \prime}(0)$
1: Answer and reasoning
16. $2001 \mathrm{AB} 4 / \mathrm{BC} 4$
(a) $h^{\prime}(x)=0$ at $x= \pm \sqrt{2}$


Local minima at $x=\sqrt{2}$ and at $x=-\sqrt{2}$
(b) $h^{\prime \prime}(x)=1+\frac{2}{x^{2}}>0$ for all $x \neq 0$.

Therefore, the graph of $h$ is concave up for all $x \neq 0$.
(c) $h^{\prime}(4)=\frac{16-2}{4}=\frac{7}{2}$
$y+3=\frac{7}{2}(x-4)$
(d) The tangent line is below the graph because the graph of $h$ is concave up for $x>4$.
: $x= \pm \sqrt{2}$
analysis
conclusions
<-1> not dealing with
discontinuity at 0

1: $\quad h^{\prime \prime}(x)$
3 1: $\quad h^{\prime \prime}(x)>0$
1: answer

1: tangent line equation

1: answer with reason

