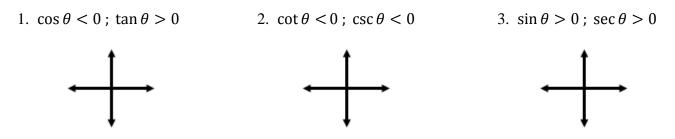

Name_

When θ is in standard position and a perpendicular is dropped from the terminal side of θ to the positive x-axis. The 6 trig ratios can be written as:

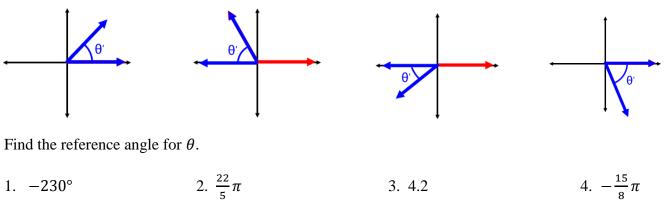

Based on the right triangle above, $x^2 + y^2 = r^2$ and $r = \sqrt{x^2 + y^2}$, where r > 0.

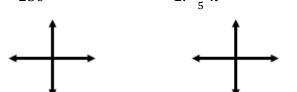
Ex 1: The terminal side of an angle θ in standard position passes through the indicated point. Calculate the values of the 6 trigonometric functions for angle θ .

$$\left(\frac{2}{9}, -\frac{1}{3}\right)$$

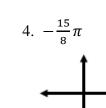
Signs
Since sin $\theta = \frac{y}{r}$; r > 0sin θ Thus sin $\theta > 0$ where y > 0 and sin $\theta < 0$ where y < 0.Since $\cos \theta = \frac{x}{r}$; r > 0Cos θ Thus $\cos \theta > 0$ where x > 0 and $\cos \theta < 0$ where x < 0.Since $\tan \theta = \frac{y}{x}$ Thus $\tan \theta > 0$ where x > 0; y > 0 and where x < 0; y < 0
And $\tan \theta < 0$ where x > 0; y < 0 and where x < 0; y > 0HINT: Associate $\tan \theta$ with the slope of a line.

*Given θ in standard position, determine the quadrant in which the terminal side of θ lies.


Ex: Given the following constraints, find the remaining trigonometric function values (ratios).


2. If $\sin \theta = -\frac{7}{25}$ and $\tan \theta < 0$	$\sin \theta =$	cscθ
	cosθ	sec $ heta$
	tanθ	$\cot \theta$

3. If $\sec \theta = -3$ and $\csc \theta > 0$	$\sin\theta =$	cscθ
	cosθ	sec $ heta$
	tanθ	$\cot \theta$


DEFINITION: Reference Angle is a _____, ____(<90°) angle formed by the terminal side of θ and the _____.

The symbol for reference angle is_____.

