RIGHT TRIANGLE

Greek letters such as: _____, alpha; β , _____; ____, theta; _____, gamma are used to represent angles.

The Pythagorean Theorem is used to show the relationship between the sides of a right triangle.

_____, where a and b are the legs and c is the hypotenuse of the triangle.

The 6 Trigonometric Functions are ratios of the sides of a right triangle with respect to an angle of triangle. These functions are: sine, cosine, tangent, cosecant, secant, cotangent.

LABEL the sides of the right triangle with respect to $\, heta$. Then write the ratios of the 6 trig functions with respect to $\, heta$.

$$\sin \theta = \csc \theta =$$

$$\cos \theta = \sec \theta =$$

$$\tan \theta = \cot \theta =$$

Ex 1: Find the length of the missing side of the triangle. Then find the values of the 6 trig functions of θ .

$$\sin \theta = \cos \theta = \tan \theta =$$

$$\csc \theta = \sec \theta = \cot \theta =$$

- Ex 2: Refer to the right triangle diagram below and the given information to solve the right triangle. Round answers to 3 decimal places.
- 2. $\alpha = 65^{\circ} \text{ and } c = 37 \text{ ft}$

*Label the sides of the special triangles below. Then fill the table of trig ratios based on the triangles.

4		$\frac{30^{0}}{(\pi/6)}$	$\frac{60^{0}}{(\pi/3)}$	$\frac{45^0}{(\pi/4)}$
$30^{\circ}(\pi/6)$ $30^{\circ}(\pi/6)$ $45^{\circ}(\pi/4)$ $45^{\circ}(\pi/4)$	sinθ			
	cosθ			
	tanθ			
	cscθ			
	secθ			
	cotθ			

^{*}Use the coordinates of the Unit Circle to fill in the table of trig ratios for the quadrantal angles.

	0° (0)	$90^{0} (\pi/2)$	$\frac{180^{0}}{(\pi)}$	270^{0} $(3\pi/2)$	360^{0} (2π)
sinθ					
cosθ					
tanθ					
cscθ					
secθ					
cotθ					