Right Angle Trig

Analysis
Name \qquad (4.2)

Date \qquad
RIGHT TRIANGLE

Greek letters such as: \qquad alpha; β, \qquad ; \qquad , theta; \qquad gamma are used to represent angles.

The Pythagorean Theorem is used to show the relationship between the sides of a right triangle.
\qquad where a and b are the legs and c is the hypotenuse of the triangle.

The 6 Trigonometric Functions are ratios of the sides of a right triangle with respect to an angle of triangle. These functions are: sine, cosine, tangent, cosecant, secant, cotangent.

LABEL the sides of the right triangle with respect to θ. Then write the ratios of the 6 trig functions with respect to θ.

$\sin \theta=$	$\csc \theta=$
$\cos \theta=$	$\sec \theta=$
$\tan \theta=$	$\cot \theta=$

Ex 1: Find the length of the missing side of the triangle. Then find the values of the 6 trig functions of θ.
6

$\sin \theta=$
$\cos \theta=$
$\tan \theta=$
$\csc \theta=$
$\sec \theta=$
$\cot \theta=$

Ex 2: Refer to the right triangle diagram below and the given information to solve the right triangle.
Round answers to 3 decimal places.
2. $\alpha=65^{\circ}$ and $c=37 \mathrm{ft}$

*Label the sides of the special triangles below. Then fill the table of trig ratios based on the triangles.

	30^{0} $(\pi / 6)$	60^{0} $(\pi / 3)$	45^{0} $(\pi / 4)$
$\sin \theta$			
$\cos \theta$			
$\tan \theta$			
$\csc \theta$			
$\sec \theta$			
$\cot \theta$			

*Use the coordinates of the Unit Circle to fill in the table of trig ratios for the quadrantal angles.

	0° (0)	90^{0} $(\pi / 2)$	180^{0} (π)	270^{0} $(3 \pi / 2)$	360^{0} (2π)
$\sin \theta$					
$\cos \theta$					
$\tan \theta$					
$\csc \theta$					
$\sec \theta$					
$\cot \theta$					

