Arc Length

Definition: If a central angle $\boldsymbol{\theta}$ in a circle with radius \boldsymbol{r} intercepts an arc on the circle of length \boldsymbol{s}, then the arc length s if given by

$$
s=r \theta, \text { where } \theta \text { is given in radians }
$$

Ex: Find the exact arc length made by the indicated central angle and radius.
$\theta=14^{\circ}, r=15 \mathrm{in}$

Area of Circular Sector

Definition: The area of a sector of a circle with radius \boldsymbol{r} and central angle $\boldsymbol{\theta}$ is given by

$$
A=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is given in radians }
$$

Ex. If a sprinkler head rotates 75° and has enough pressure to keep a constant 20 -ft spray, what is the area of the sector of lawn it can water? Round to the nearest hundredth square foot.

Linear Speed

Definition: If a point \boldsymbol{P} moves along the circumference of a circle at a constant speed, then the linear speed, \boldsymbol{v} is given by

$$
v=\frac{s}{t}, \text { where } s=\operatorname{arc} \text { length and } t=\text { time }
$$

Ex: 1. A car travels at a constant speed around a circular track with circumference equal to 3 miles. If the car records a time of 12 minutes for 7 laps, what is the linear speed of the car in miles per hour?

Ex: 2. Find the distance traveled (arc length) of a point that moves with constant speed \boldsymbol{v} along a circle in time $\boldsymbol{t} . \quad v=5.6 \frac{\mathrm{ft}}{\mathrm{s}} ; t=2 \mathrm{~min}$

Angular Speed

Definition: If a point \boldsymbol{P} moves along the circumference of a circle at a constant speed, then the central angle $\boldsymbol{\theta}$ that is formed with the terminal side passing through point \boldsymbol{P} also changes over some time \boldsymbol{t} at a constant speed. The angular speed $\boldsymbol{\omega}$ (omega) is given by:

$$
\omega=\frac{\theta}{t}, \text { where } \theta \text { is given in radians }
$$

Ex: Find the angular speed (radians $/ \mathrm{sec}$) associated with rotating a central $\boldsymbol{\theta}$ in time \boldsymbol{t}.

$$
\theta=60^{\circ} ; t=0.2 \mathrm{sec}
$$

Relationship Between Linear and Angular Speed

$$
v=r \omega \text { or } \omega=\frac{v}{r}, \text { only when } \theta \text { is given in radians }
$$

Ex: 1. Find the linear speed of a point traveling at a constant speed along the circumference of a circle with the given radius and angular speed. $\omega=\frac{3 \pi \mathrm{rad}}{4 \mathrm{sec}} ; r=8 \mathrm{~cm}$

Ex: 2 A truck comes standard with tires that have a diameter of 25.7 inches (17" rims). If the owner decides to upgrade to tires with diameter of 28.2 inches ($19^{\prime \prime}$ rims) without having the onboard computer updated, how fast will the truck actually be traveling when the speedometer reads 75 mph ?

