4.1	Angle Basics
Not	es/Evamnles

Math Analysis

Name:

An angle is formed when a ray is rotated about its endpoint. The first ray is called the ______side and the second ray is called the ______side of the angle. The common endpoint between these two rays is called the ______starting the parts the angle.

An angle is identified by:

- 1. The direction of its rotation.
 - *_____ angles are generated by counterclockwise rotations.
 - *Negative angles are generated by ______ Rotations.
- 2. The amount of the rotation (the size of the angle).

An angle is in ______ position when:

- 1. Its vertex is at the ______ of a rectangular coordinate system.
- 2. Its initial side lies along the _____

When an angle is in standard position and its terminal side lies on the x-axis or y-axis, the angle is called a _____ angle. Otherwise, the terminal side can lie in any of the 4 quadrants of the coordinate plane and we say that the angle lies in that quadrant.

ANGLE MEASUREMENT. Angles are measured either in DEGREE S or RADIANS.

A. Degrees

1 revolution = _____degrees

 $\frac{1}{2}$ revolution = _____degrees

B. Radians

1 revolution = _____ radians

 $\frac{1}{2}$ revolution = _____ radians

**Label the quadrants, the FILL in the UNIT CIRCLE with special angle measurements in DEGREE and RADIAN.

CONVERSION.

Degree ──────────────────────── Radian

Radian ———> Degree

Degree Measurement $\times \frac{\pi}{180^{\circ}}$

Radian Measurement $\times \frac{180^{\circ}}{\pi}$

Ex. Convert to Radian

1. 120°

Ex. Convert to Degree

1.
$$\frac{11}{12}\pi$$

Sketch each angle in standard position and state which quadrant the angle lies. (Do not convert to degrees)

1.
$$-\frac{7}{4}\pi$$

3.
$$\frac{16}{3}\pi$$

Angles with the same initial side and terminal sides are called _____ angles. Coterminal angles are obtained by adding or subtracting multiples of 2π or 360° .

Ex. Find a positive angle less than $~2\pi~{
m or}~360^\circ$ that is coterminal with the given angle in standard position.

2.
$$-\frac{4}{7}\pi$$

3.
$$\frac{21}{5}\pi$$