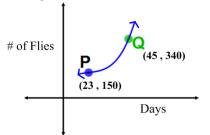
GN_Rates of Change and Derivatives Unit 2_Day 1 Calculus

Name	
Date	

Recall:

*Slope:


*Average Rate of Change

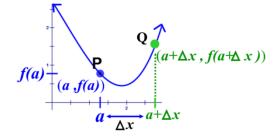
- The rate of Change between **<u>TWO</u>** points
- Change in a quantity
- Change in Time
- The slope of the **secant** line between two points on a curve

•
$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x - x_1} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
 **This is called a Difference Quotient*

Example:

Average Rate =

This average rate is also the slope of the secant line passing through point P and point Q. Write the equation for the secant line \overrightarrow{PQ} .

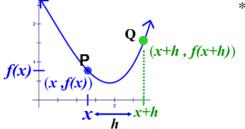

*

*Instantaneous Rate of Change

Suppose you wanted to know exactly how fast the population of flies is changing at a specific instant on day 23. How could you calculate this?

Instantaneous Rate =

The graph below illustrates the instantaneous rate of change at a point "a". (x = a)



Instantaneous Rate of Change=

$$\lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{(a + \Delta x) - a} = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

**When this limit exists, it is called the derivative of "*f* at *a*". **This derivative at x = a is denoted by f'(a)

The graph below illustrates the general form of instantaneous rate of change where Δx is replaced by "*h*". (See demonstration with Calculus in Motion- Define Derivative and NDER)

The General Definition of Derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Beside the General Definition of Derivative given in the previous page, the derivative at a point "a" is:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 or $f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$

Derivative is also known as:

- Slope of the tangent line at a point on the curve
- Instantaneous rate of change
- Slope of a function at a point
- Rate of change such as: velocity, speed, acceleration

<u>Notations</u> used to denote the derivative of (x):

Notation	Read as	Note:	
f'(x)	f prime of x		
<i>y</i> ′	y prime	*If $f'(x)$ exists, then we say f is	
$\frac{dy}{dx}$	"dy dx" or "the derivative of y with respect to x"	differentiable at <i>x</i> . *Differentiable function is one that is	
$\frac{df}{dx}$	"df dx" or "the derivative of f with respect to x"	differentiable at every point of its domain.	
$\frac{d}{dx}f(x)$	" $d dx of f at x$ " or "the derivative of f at x"	*To Differentiate is to find the derivative of the function.	

Example.

- #1 7. Given: $f(x) = 2x^2 4x + 1$
- 1. Find the general derivative, f'(x).

- 2. Why isn't the slope a constant?
- 3. Find the slope of this curve at x = 2.
- 4. Write the equation of the line tangent to this curve at x = 2.
- 5. Write the equation of the line normal to this curve at x = 2.
- 6. Write the equation of the horizontal tangent to this curve.
- 7. Write the equation of the line tangent to this curve at x = -1.