GN_Rates of Change and Derivatives Unit 2_Day 1

Calculus

Recall:

*Slope:
*Average Rate of Change

- The rate of Change between TWO points
- Change in a quantity
- The slope of the secant line between two points on a curve
- $\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x-x_{1}}=\frac{f(x+\Delta x)-f(x)}{\Delta x} \quad * *$ This is called a Difference Quotient ${ }^{*} *$

Average Rate $=$

This average rate is also the slope of the secant line passing through point P and point Q . Write the equation for the secant line $\overleftrightarrow{P Q}$.
*Instantaneous Rate of Change
Suppose you wanted to know exactly how fast the population of flies is changing at a specific instant on day 23 . How could you calculate this?

Instantaneous Rate $=$

The graph below illustrates the instantaneous rate of change at a point " a ". $(x=a)$

Instantaneous Rate of Change=

$$
\lim _{\Delta x \rightarrow 0} \frac{f(a+\Delta x)-f(a)}{(a+\Delta x)-a}=\lim _{\Delta x \rightarrow 0} \frac{f(a+\Delta x)-f(a)}{\Delta x}
$$

${ }^{* *}$ When this limit exists, it is called the derivative of " f at a ".
**This derivative at $x=a$ is denoted by $f^{\prime}(a)$
The graph below illustrates the general form of instantaneous rate of change where Δx is replaced by " \boldsymbol{h} ". (See demonstration with Calculus in Motion- Define Derivative and NDER)

The General Definition of Derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Beside the General Definition of Derivative given in the previous page, the derivative at a point " \boldsymbol{a} " is:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad \text { or } \quad f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Derivative is also known as:

- Slope of the tangent line at a point on the curve
- Instantaneous rate of change
- Slope of a function at a point
- Rate of change such as: velocity, speed, acceleration

Notations used to denote the derivative of (x) :

Notation	Read as
$f^{\prime}(x)$	f prime of x
y^{\prime}	y prime
$\frac{d y}{d x}$	"dy $d x$ " or "the derivative of y with respect to $x "$
$\frac{d f}{d x}$	"df $d x$ " or "the derivative of f with respect to $x "$
$\frac{d}{d x} f(x)$	" $d d x$ off at x " or "the derivative off at x "

Note:

*If $f^{\prime}(x)$ exists, then we say \boldsymbol{f} is differentiable at \boldsymbol{x}.
*Differentiable function is one that is differentiable at every point of its domain.
*To Differentiate is to find the derivative of the function.

Example.
\#1-7. Given: $f(x)=2 x^{2}-4 x+1$

1. Find the general derivative, $f^{\prime}(x)$.
2. Why isn't the slope a constant?
3. Find the slope of this curve at $x=2$.
4. Write the equation of the line tangent to this curve at $x=2$.
5. Write the equation of the line normal to this curve at $x=2$.
6. Write the equation of the horizontal tangent to this curve.
7. Write the equation of the line tangent to this curve at $x=-1$.
