1_3GN_Infinite Limits and Asymptotes

Calculus AB

I. Limits to $\pm \infty$: To find limits as x approaches $+\infty$ or $-\infty$ for rational functions:

- If the degree of the numerator is larger than the degree of the denominator, the limit will be $+\infty$ or ${ }^{-\infty}$. Test a point to determine whether the value is positive or negative.
- If the degree of the denominator is larger than the degree of the numerator, the limit will be 0 .
- If the degrees of the numerator and the denominator are equal, the limit will be the ratio of the coefficients of the leading terms.

Examples:
1a. $\lim _{x \rightarrow \infty} \frac{x^{2}-4}{x^{3}+9}$
b. $\lim _{x \rightarrow-\infty} \frac{x^{2}-4}{x^{3}+9}$
2a. $\lim _{x \rightarrow \infty} \frac{3 x^{2}-6 x+2}{x^{2}}$
b. $\lim _{x \rightarrow-\infty} \frac{3 x^{2}-6 x+2}{x^{2}}$

3a. $\lim _{x \rightarrow \infty} \frac{x^{3}}{\sqrt{x^{6}+3}}$
b. $\lim _{x \rightarrow-\infty} \frac{x^{3}}{\sqrt{x^{6}+3}}$

4a. $\lim _{x \rightarrow \infty} \frac{x^{5}}{x^{4}-6 x+9}$
b. $\lim _{x \rightarrow-\infty} \frac{x^{5}}{x^{4}-6 x+9}$
II. Asymptotes: (for rational functions only)

A. Vertical

If the limit as x approaches a constant, c , is $+\infty$ or $-\infty$, then $\mathrm{x}=\mathrm{c}$ is a vertical asymptote. ** If the denominator equals 0 at $\mathrm{x}=\mathrm{c} \mathbf{A N D}$ there is no way to cancel the 0 from the denominator, then $\mathrm{x}=\mathrm{c}$ is a vertical asymptote. ${ }^{* *}$

1. $f(x)=\frac{1}{x+2}$
2. $f(x)=\frac{x-2}{x^{2}-4}$

B. Horizontal

If the limit as x approaches $+^{+\infty}$ or $-\infty$ is a constant, c , then $\mathbf{y}=\mathbf{c}$ is a horizontal asymptote.
The degree of the numerator must be less than or equal to the degree of the denominator. You must check for crossing with horizontal asymptotes.

1. $f(x)=\frac{x^{2}-4}{x^{3}+1}$
2. $f(x)=\frac{4 x^{2}+2}{x^{2}-9}$
$\lim _{x \rightarrow \infty} \frac{x^{2}-4}{x^{3}+1}=$
$\lim _{x \rightarrow \infty} \frac{4 x^{2}+2}{x^{2}-9}=$

Horizontal Asymptote(s):
Horizontal Asymptote(s):
*To check for cross point(s), set the function $=$ to the Limit, then solve for x . The cross point will be (x, L).
Check for crossing:
Check for crossing:
** Horizontal asymptotes are also known as "end behavior" since they describe what is happening at both ends of a function. **
${ }^{* *}$ A rational function will have a horizontal asymptote when the degree of the numerator is either less than or equal to the degree of the denominator.**

Think About It!

Sketch a possible graph for $\boldsymbol{f}(\boldsymbol{x})$ with the given set of conditions.

1. $\boldsymbol{f}(\mathbf{0})=4 ; \lim _{\boldsymbol{x} \rightarrow \mathbf{0}} f(\boldsymbol{x})=\mathbf{2}$; No Zeros
$\lim _{x \rightarrow 1^{-}} f(x)=\infty ; \lim _{x \rightarrow 1} f(x)=D N E ; \lim _{x \rightarrow 5^{+}} f(x)=\infty ; \lim _{x \rightarrow 5^{-}} f(x)=-\infty ;$
$\lim _{x \rightarrow-\infty} f(x)=1 ; \lim _{x \rightarrow \infty} f(x)=1$; Cross point at $x=7$
