1_3GN_Infinite Limits and Asymptotes

Calculus AB

- **I.** Limits to $\pm \infty$: To find limits as x approaches $+\infty$ or $-\infty$ for rational functions:
 - If the degree of the numerator is larger than the degree of the denominator, the limit will be +∞ or
 -∞. Test a point to determine whether the value is positive or negative.
 - If the degree of the denominator is larger than the degree of the numerator, the limit will be 0.
 - If the degrees of the numerator and the denominator are equal, the limit will be the ratio of the coefficients of the leading terms.

Examples:

1a.
$$\lim_{x \to \infty} \frac{x^2 - 4}{x^3 + 9}$$
 b.
$$\lim_{x \to -\infty} \frac{x^2 - 4}{x^3 + 9}$$

2a.
$$\lim_{x \to \infty} \frac{3x^2 - 6x + 2}{x^2}$$
 b.
$$\lim_{x \to -\infty} \frac{3x^2 - 6x + 2}{x^2}$$

3a.
$$\lim_{x \to \infty} \frac{x^3}{\sqrt{x^6+3}}$$
 b. $\lim_{x \to -\infty} \frac{x^3}{\sqrt{x^6+3}}$

4a.
$$\lim_{x \to \infty} \frac{x^5}{x^4 - 6x + 9}$$
 b.
$$\lim_{x \to -\infty} \frac{x^5}{x^4 - 6x + 9}$$

II. Asymptotes: (for rational functions only)

A. Vertical

If the limit as x approaches a constant, c, is $+\infty$ or $-\infty$, then x = c is a vertical asymptote. ** If the denominator equals 0 at x = c **AND** there is no way to cancel the 0 from the denominator, then x = c is a vertical asymptote. **

1.
$$f(x) = \frac{1}{x+2}$$
 2. $f(x) = \frac{x-2}{x^2-4}$

Vertical Asymptote(s):

Vertical Asymptote(s):

B. Horizontal

If the limit as x approaches $+\infty$ or $-\infty$ is a constant, c, then $\mathbf{y} = \mathbf{c}$ is a horizontal asymptote. The degree of the numerator must be less than or equal to the degree of the denominator. You must check for crossing with horizontal asymptotes.

1.
$$f(x) = \frac{x^2 - 4}{x^3 + 1}$$

2. $f(x) = \frac{4x^2 + 2}{x^2 - 9}$
 $\lim_{x \to \infty} \frac{x^2 - 4}{x^3 + 1} = \lim_{x \to \infty} \frac{4x^2 + 2}{x^2 - 9} =$

Horizontal Asymptote(s):

Horizontal Asymptote(s):

*To check for cross point(s), set the function = to the Limit, then solve for x. The cross point will be (x, L).

Check for crossing:

Check for crossing:

** Horizontal asymptotes are also known as "end behavior" since they describe what is happening at both ends of a function. **

A rational function will have a horizontal asymptote when the degree of the numerator is either less than or equal to the degree of the denominator.

Think About It! Sketch a possible graph for f(x) with the given set of conditions.

1. f(0) = 4; $\lim_{x \to 0} f(x) = 2$; No Zeros

 $\lim_{x \to 1^{-}} f(x) = \infty \ ; \ \lim_{x \to 1} f(x) = DNE \ ; \ \lim_{x \to 5^{+}} f(x) = \infty \ ; \ \lim_{x \to 5^{-}} f(x) = -\infty \ ;$

 $\lim_{x \to -\infty} f(x) = 1; \quad \lim_{x \to \infty} f(x) = 1; \text{ Cross point at } x = 7$