1_13GN_Continuity

Calculus

Definition of Continuity			
A function <i>f</i> is said to be continuous at $x = c$			
if and only if:			
1) $f(c)$ is defined.			
2) $\lim_{x \to c} f(x)$ exists.			
3) $\lim_{x\to c} f(x) = f(c).$			

<u>Ex</u>. Sketch a function f so that:

A Function is continuous on an open interval (a, b) if it is continuous at every point in (a, b).

A **CONTINUOUS FUNCTION** is one that is continuous at every point of its domain.

Ex. Sketch a function J so that:			
(a) $f(c)$ is not defined	(b) $\lim_{x \to c} f(x)$ does not exist		
(c) $f(c)$ is defined and $\lim_{x \to c} f(x)$ exists but $\lim_{x \to c} f(x) \neq f(c)$	(d) f is continuous at $x = c$		

Types of Discontinuities

Removable	Non-Removable			

A function f is continuous at a left endpoint a or a right endpoint b if $\lim_{x \to a^{-}} f(x) = f(a)$ or $\lim_{x \to b^{+}} f(x) = f(b)$.

Ex. The function $f(x) = \sqrt{25 - x^2}$ is continuous on the closed interval $-5 \le x \le 5$ because $\lim_{x \to -5^+} f(x) = f(-5) = 0$ and $\lim_{x \to 5^-} f(x) = f(5) = 0$.

2) Identify each value as a point, jump, or infinite (asymptotic) discontinuity

3) Identify each value as a removable or non-removable discontinuity.

4) Sketch the graph.

<u>Ex B</u>. Use the definition of continuity to prove that the function is discontinuous at x = 2 if a = -4. Sketch the graph of f to check your answer.

$$f(x) = \begin{cases} ax + 7 \text{ if } x \neq 2\\ 1 \text{ if } x = 2 \end{cases}$$