Definition of Continuity

A function f is said to be continuous at $x=c$ if and only if:

1) $f(c)$ is defined.
2) $\lim _{x \rightarrow c} f(x)$ exists.
3) $\lim _{x \rightarrow c} f(x)=f(c)$.

A Function is continuous on an open interval (a, b) if it is continuous at every point in (a, b).

A CONTINUOUS FUNCTION is one that is continuous at every point of its domain.

Ex. Sketch a function \boldsymbol{f} so that:

(a) $f(c)$ is not defined	(b) $\lim _{x \rightarrow c} f(x)$ does not exist
(c) $f(c)$ is defined and $\lim _{x \rightarrow c} f(x)$ exists but $\lim _{x \rightarrow c} f(x) \neq f(c)$	(d) f is continuous at $x=c$

Types of Discontinuities

Removable	Non-Removable			

A function \boldsymbol{f} is continuous at a left endpoint \boldsymbol{a} or a right endpoint \boldsymbol{b} if $\lim _{x \rightarrow a^{-}} f(x)=f(a)$ or $\lim _{x \rightarrow b^{+}} f(x)=f(b)$.

Ex. The function $f(x)=\sqrt{25-x^{2}}$ is continuous on the closed interval $-5 \leq x \leq 5$ because

$$
\lim _{x \rightarrow-5^{+}} f(x)=f(-5)=0 \text { and } \lim _{x \rightarrow 5^{-}} f(x)=f(5)=0
$$

Ex A. 1) Find the value(s) of x at which the given function is discontinuous.
2) Identify each value as a point, jump, or infinite (asymptotic) discontinuity
3) Identify each value as a removable or non-removable discontinuity.
4) Sketch the graph.
(a) $f(x)=\frac{x^{2}-4}{x-2}$
(c) $f(x)=\frac{|x-3|}{x-3}$
(e) $f(x)=x^{2}+1$

(d) $f(x)=\left\{\begin{array}{l}x+2 \text { if } x<1 \\ 2-x \text { if } x>1\end{array}\right.$
(b) $f(x)=\frac{1}{x-3}$

\qquad
\square
(f) $f(x)=\frac{x}{x^{2}-3 x}$

Ex B. Use the definition of continuity to prove that the function is discontinuous at $x=2$ if $a=-4$. Sketch the graph of f to check your answer.

$$
f(x)=\left\{\begin{array}{c}
a x+7 \text { if } x \neq 2 \\
1 \quad \text { if } x=2^{-}
\end{array}\right.
$$

